ABSTRACT
AIMS: To evaluate the applicability of the Mimosa tenuiflora and Eucalyptus urograndis pyroligneous acids (PAs) as alternative antiseptics in dairy goats. METHODS AND RESULTS: Cytotoxicity was evaluated in vitro using bacteria, as well as in vivo using goats, and the influence of PAs on the physicochemical parameters of fresh milk were examined. The cytotoxicity of PAs was evaluated in terms of morphology, cell viability and metabolic activity of goat tegumentary cells. The PA of M. tenuiflora had results similar to those of 2% iodine. For the in vitro tests, strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were used with the well technique, demonstrating inhibition halos greater than 9 mm. In the in vivo test, 15 animals were used per phase of the experiment, and the plate counting technique showed that there was antiseptic action of both extracts, with emphasis on the M. tenuiflora PA. Physicochemical analysis of the milk showed that neither PAs interfered with its physical-chemical parameters. CONCLUSIONS: The PA of M. tenuiflora presented potential as an alternative antiseptic in dairy goats. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the use of PA as an antimicrobial agent in animals.
Subject(s)
Anti-Bacterial Agents/pharmacology , Eucalyptus , Milk/microbiology , Mimosa , Terpenes/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Infective Agents, Local/isolation & purification , Anti-Infective Agents, Local/pharmacology , Eucalyptus/chemistry , Goats , Mimosa/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Terpenes/isolation & purificationABSTRACT
Anti-Toxoplasma gondii antibodies were evaluated in greater rheas (Rhea americana) from the Reproduction Centre for Wild Animals located at the Universidade Federal Rural do Semiárido in the city of Mossoró, Rio Grande do Norte, by the modified agglutination test (MAT >25). It was verified that, from the 69 examined birds, 4.3% (three rheas) tested positive. The research about ratites toxoplasmoses are scarce, this way, the results showed the importance of the T. gondii diagnosis in wild birds.(AU)
Subject(s)
Animals , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Rheiformes , Antibody FormationSubject(s)
Animals , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Antibody Formation , RheiformesABSTRACT
Os insetos são importantes transmissores de doenças que cada vez mais ocorrem em áreas periurbanas ou urbanas, devido à introdução ou reaparecimento de seus respectivos vetores. As estratégias de controle das doenças transmissíveis por vetores biológicos são de difícil execução, principalmente quando associadas à existência de reservatórios domésticos e silvestres e aos aspectos ambientais. O uso de inseticidas direcionado ao combate de formas adultas de dípteros vetores tem sido freqüente. Entretanto, o amplo uso dos inseticidas sintéticos desde a descoberta do DDT para o controle de pragas domésticas e da agricultura, como também de vetores que transmitem doenças ao homem, levou a uma maior preocupação em relação à toxicidade e impacto ambiental destes agentes. Além disso, a resistência a inseticidas tornou-se uma preocupação crescente na agricultura, economia e na saúde pública. Um grande número de diferentes espécies de plantas representando diferentes áreas geográficas ao redor do mundo tem se mostrado capaz de causar efeitos letais e subletais sobre insetos. Esta revisão aborda a utilização de extratos de plantas com potencial no controle de dípteros vetores de zoonoses.
Insects are important transmitters of diseases increasingly occurring in peri-urban or urban areas due to the introduction or the reemergence of their respective vectors. Strategies to control diseases transmitted by biological vectors are difficult to implement, especially when associated with the existence of domestic and wild reservoirs and environmental aspects. The use of insecticides against adult forms of dipteran vectors has been frequent. However, the widespread use of synthetic insecticides since the discovery of DDT to control domestic and agricultural pests, as well as vectors that transmit diseases to humans, has led to greater concern for the toxicity and environmental impact of these agents. Moreover, resistance to insecticides has become an increasing concern in agriculture, economy and public health. A large number of different plant species representing different geographical areas around the world have been capable of causing lethal and sublethal effects on insects. This review addresses the use of potential plant extracts to control dipteran vectors of zoonosis.