Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1413253, 2024.
Article in English | MEDLINE | ID: mdl-39021388

ABSTRACT

MAX phases, characterized as nanolaminates of ternary carbides/nitrides structure, possess a unique combination of ceramic and metallic properties, rendering them pivotal in materials research. In this study, chromium aluminum carbide ternary compounds, Cr2AlC (211), Cr3AlC2 (312), and Cr4AlC3 (413) were successfully synthesized with high purity using a facile and cost-effective sol-gel method. Structural, morphological, and chemical characterization of the synthesized phases was conducted to understand the effects of composition changes and explore potential applications. Comprehensive characterization techniques including XRD for crystalline structure elucidations, SEM for morphological analysis, EDX for chemical composition, Raman spectroscopy for elucidation of vibrational modes, XPS to analyze elemental composition and surface chemistry, and FTIR spectroscopy to ensure the functional groups analysis, were performed. X-ray diffraction analysis indicated the high purity of the synthesized Cr2AlC phase as well as other ternary compounds Cr3AlC2 and Cr4AlC3, suggesting its suitability as a precursor for MXenes production. Additionally, the antimicrobial activity against Candida albicans and biocompatibility assessments against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and HepG2 cell line were investigated. The results demonstrated significant antifungal activity of the synthesized phases against Candida albicans and negligible impact on the viability of E. coli and S. aureus. Interestingly, lower concentrations of Cr2AlC MAX phase induced cytotoxicity in HepG2 cells by triggering intercellular oxidative stress, while Cr3AlC2 and Cr4AlC3 exhibited lower cytotoxicity compared to Cr2AlC, highlighting their potential in biomedical applications.

2.
ACS Omega ; 8(44): 41169-41181, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970052

ABSTRACT

Cerium (Ce3+) substitution in Cu-Cd spinel nanoferrites with the compositional formula Cu0.5Cd0.5Fe2-xCexO4 (x = 0.0, 0.0125, 0.0250, 0.0375, 0.050) was performed by the hydrothermal route. The structural, morphological, optical, electrical, and dielectric properties of Ce-substituted Cu-Cd ferrites were explored. X-ray diffraction revealed the single-phase cubic structure of all nanoferrites. The average crystallite size (72.42-11.61 nm) and lattice constant (8.419-8.449 Å) were observed for the synthesized ferrites. The surface shapes of particles were determined by scanning electron microscopy. The substitution was also verified by Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometry. The semiconducting behavior of ferrites was determined from their electrical properties, such as direct current (DC) electrical resistivity. The Curie temperature was observed at 523 K temperature for all nanoferrites. The dielectric constant and dielectric loss significantly indicated the reducing behavior with an increase in the cerium concentration. The sample Cu0.5Cd0.5Fe1.975Ce0.025O4 resulted in the lowest optical bandgap energy, DC resistivity, and dielectric losses. The nature of the electrical resistivity and dielectric constants indicate that the designed materials are highly appropriate for the design of microwave gadgets.

3.
RSC Adv ; 13(49): 34308-34321, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024970

ABSTRACT

The nanocomposites of Co0.5Ni0.5Gd0.03Fe1.97O4/graphene nanoplatelets (CNGF/GNPs) were synthesized by a cost-effective sol-gel auto combustion (SGAC) route. The X-ray diffraction analysis confirmed the cubic structure of the as-prepared nanocomposites, and a crystallite size of 32.28 nm was observed for the 7.5 wt% GNPs. Irregular and unique nanoparticles consisting of short stacks of graphene sheets having a platelet shape were confirmed by the morphological analysis of the as-prepared nanocomposites. Raman analysis revealed a spinel crystal structure along with a new vibrational mode due to the GNPs. The energy bandgap was 3.98 eV for the composite with 7.5 wt% GNP concentration. It was observed that the percentage temperature coefficient of resistance (TCR%) rapidly decreased with an increase in temperature both in low- and high-temperature ranges. Dielectric studies carried out in the frequency range 104-107 Hz confirmed that the graphene-added composites had high values for both the real and imaginary parts of permittivity at low frequencies. A decrease in saturation magnetization with an increase in GNP concentration was observed compared with the pure CNGF samples. Hence, the as-prepared composites are useful for application in high-frequency devices as well as spintronics.

4.
PLoS One ; 18(2): e0269566, 2023.
Article in English | MEDLINE | ID: mdl-36758019

ABSTRACT

This article fundamentally aims at the comparative study of thermo-mechanical characters of Gr/Ag and Gr/Cu nano-composites. For demonstration purposes, three dimensions that is, (1 0 0), (1 1 0) and (1 1 1), of the metals attached with single layer Graphene sheet are considered. The study is facilitated by the adaptation of the molecular dynamic simulations of the soft LAMMPS to mimic the broad range of experimental environment. The attributes of each structure and their orientations are elaborated over wide range of experimental states, encompassing temperature ranging from 300 K to 1500 K, to assess the melting behavior. The thermal and structural properties are explored by employing mean square displacement (MSD) and radial distribution function (RDF). Furthermore, the mechanical characters are elaborated along both arm-chair and zigzag directions. The findings are supported by producing relevant graphical displays of stress-strain curves and generating extravagant depictions of various dislocations with the application of visual molecular dynamics (VMD) tool. On the basis of intense and careful computational investigations, we witnessed that the Gr/Cu (1 1 1) orientation produced most profound melting characteristics along with distinctive strengthening and fracture mechanism. These outcomes are consistent in comparison of both Gr/Metals layered structures and also with respect to all considered metallic orientations. The findings are discussed thoroughly in a well-structured and synchronized fashion throughout the article.


Subject(s)
Fractures, Bone , Graphite , Humans , Molecular Dynamics Simulation , Acclimatization
5.
Phys Chem Chem Phys ; 23(43): 24878-24891, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34724010

ABSTRACT

The thermodynamic, structural, magnetic and electronic properties of the pristine and intrinsic vacancy-defect-containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of Ba3SnO has been evaluated with reference to its competing binary phases Ba2Sn, BaSn and BaO. Subsequently, valid limits of the atomic chemical potentials derived from the thermodynamic stability were used for assessing the formation of Ba, Sn and O vacancy defects in Ba3SnO under different synthesis environments. Based on the calculated defect-formation energies, we find that the charge-neutral oxygen vacancies are the most favourable type of vacancy defect under most chemical environments. The calculated electronic properties of pristine Ba3SnO show that inclusion of spin-orbit coupling in exchange-correlation potentials computed using generalized gradient approximation yields a semimetallic band structure exhibiting twin Dirac cones along the Γ-X path of the Brillouin zone. The effect of spin-polarization and spin-orbit coupling on the physical properties of intrinsic vacancy defects containing Ba3SnO has been examined in detail. Using Bader charges, electron localization function (ELF), electronic density of states (DOS) and spin density, we show that the isolated oxygen vacancy is a magnetic defect in anti-perovskite Ba3SnO. Our results show that the origin of magnetism in Ba3SnO is the accumulation of unpaired charges at the oxygen vacancy sites, which couple strongly with the 5d states of the Ba atom. Owing to the metastability observed in earlier theoretically predicted magnetic topological semimetals, the present study reveals the important role of intrinsic vacancy defects in giving rise to magnetism and also provides opportunities for engineering the electronic structure of a Dirac semimetal.

7.
Environ Sci Pollut Res Int ; 28(27): 35911-35923, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33683584

ABSTRACT

We have synthesized BiVO4/Ti3C2 nanocomposite via a low-cost hydrothermal method and investigate its photocatalytic degradation activity against monoazo (methyl orange) and diazo dye (Congo red) in an aqueous solution under visible light. The physiochemical characterization exhibited that the addition of MXene in pristine BiVO4 nanocomposite led to an increase in specific surface area and reduction in optical band gap energy. MXene also helps in enhancing visible light response via a higher electron-hole pair generation rate and long lifetime. The synthesized BiVO4/Ti3C2 heterojunction composite exhibited 99.5 % degradation efficiency within 60 min for Congo red and 99.1 % for methyl orange solution in 130 min owed to a large specific surface area (1.79 m2/g), reduced band gap (1.99 eV), and low recombination rate of charge carriers. The chemical mechanism for BiVO4/Ti3C2 nanocomposite proposes that Ti3C2 role-plays as electron capture because of the higher potential of MXenes, tuning band gap energy which paves the way to excellent photocatalytic action. This work opens a new basis for developing Ti3C2 based promising and inexpensive co-catalyst for efficient solar utilization in photocatalytic-related applications in the future.


Subject(s)
Bismuth , Titanium , Light , Vanadates
8.
RSC Adv ; 11(22): 13105-13118, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-35423899

ABSTRACT

The present study reports trigonal phase molybdenum disulfide quantum dots (MoS2/QDs)-decorated (Bi1-x Fe x )VO4 composite heterostructures. Initially, (Bi1-x Fe x )VO4 heterostructure nanophotocatalysts were synthesized through the hydrothermal method decorated with 1T-MoS2 via a sonication process. 1T-MoS2@(Bi1-x Fe x )VO4 heterostructures were characterized in detail for phase purity and crystallinity using XRD and Raman spectroscopy. The Raman mode evaluation indicated monoclinic, mixed monoclinic-tetragonal and tetragonal structure development with increasing Fe concentration. For physiochemical properties, SEM, EDX, XPS, PL, EPR, UV-visible and BET techniques were applied. The optical energy band gaps of 1T-MoS2@(Bi1-x Fe x )VO4 heterostructures were calculated using the Tauc plot method. It shows a blue shift initially within a monoclinic structure then a red shift with an increase of Fe concentration. 1T-MoS2@(Bi40Fe60)VO4 with 2 wt% of 1T-MoS2-QDs carrying a mixed phase exhibited higher photocatalytic activity. The enhanced photocatalytic activity is attributed to the higher electron transportation from (Bi1-x Fe x )VO4 surface onto 1T-MoS2 surface, consequently blocking the fast electron-hole recombination within (Bi1-x Fe x )VO4. 1T-MoS2 co-catalyst interaction with (Bi1-x Fe x )VO4 enhanced the light absorption in the visible region. The close contact of small 1T-MoS2-QDs with (Bi1-x Fe x )VO4 develops a high degree of crystallinity, with fewer defects showing mesoporous/nanoporous structures within the heterostructures which allows more active sites. Herein, the mechanism involved in the synthesis of heterostructures and optimum conditions for photocatalytic degradation of crystal violet dye are explored and discussed thoroughly.

9.
J Hazard Mater ; 367: 205-214, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30594721

ABSTRACT

Development of 1D nanostructures with novel morphology is a recent scientific attraction, so to say yielding unusual materials for advanced applications. In this work, we have prepared solution grown, single-pot 1D ZnWO4 nanowires (NWs) and the morphology is assessed for label-free but selective detection of chloramphenicol. This is the first report where, such structures are being investigated for this purpose. Transmission electron microscopy shows the presence of strands of ZnWO4 of about 20 nm in diameter. The formed NWs were highly dispersed in nature with uniform size and shape. X-ray diffraction analysis confirmed high purity of the designed NWs despite solution synthesis. X-ray photoelectron spectroscopy confirmed surface valence state of ZnWO4. Fourier transform infrared spectroscopy was employed for the ascription of functional groups, whereas, optical properties were investigated using photoluminescence. NWs were employed for the detection of a model antibiotic, chloramphenicol. The developed sensor exhibited excellent limit of detection, 0.32 µM and 100% specificity as compared to its structural and functional analogues such as thiamphenicol and clindamycin. This work can broaden new opportunities for the researchers to explore unconventional nanomaterials bearing unique morphologies and quantum phenomenon for the label-free detection of other bioanalytes.


Subject(s)
Anti-Bacterial Agents/analysis , Chloramphenicol/analysis , Nanowires/chemistry , Tungsten Compounds/chemistry , Zinc Compounds/chemistry , Anti-Bacterial Agents/chemistry , Catalysis , Chloramphenicol/chemistry , Electrochemical Techniques , Solutions
10.
Front Biosci (Elite Ed) ; 10(2): 352-374, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29293463

ABSTRACT

The discovery of antibiotics was hailed as a historic breakthrough for the human race in the fight against bacterial and malignant infections. However, in a very short time, owing to their acute and aggressive nature, bacteria have developed resistance against antibiotics and other chemotherapeutics agents. Potentially, this situation could again result in bacterial infection outbreaks. Metal and metal oxide nanoparticles have been proven as better alternatives; the combination of antibiotics and metal oxide nanoparticles was shown to decrease the toxicity and enhance the antibacterial, antiviral, and anticancer efficacy of the agents. This review provides a detailed view about the role of metal and metal oxide nanoparticles in the treatment of infections in conjunction with antibiotics, their modes of action, and synergism. In addition, the problems of multidrug resistance are addressed and will allow the development of a comprehensive, reliable, and rational treatment plan. It is expected that this comprehensive review will lead to new research opportunities, which should be helpful for future applications in biomedical science.


Subject(s)
Antibodies/administration & dosage , Drug Resistance, Multiple, Bacterial , Metal Nanoparticles/administration & dosage , Drug Synergism , Drug Therapy, Combination , Humans
11.
RSC Adv ; 8(42): 23489-23498, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-35540250

ABSTRACT

A BiVO4/FeVO4 nanocomposite photocatalyst was successfully synthesized via a hydrothermal method. The prepared heterojunction photocatalyst was characterized physically and chemically using XRD, SEM, EDX, XPS, BET, FT-IR, Raman, UV-vis DRS, EPR and photoluminescence techniques. BiVO4/FeVO4 was explored for its photocatalytic activity by the decomposition of crystal violet (CV) organic dye under visible radiation. This experiment showed that BiVO4/FeVO4 at a ratio of 2 : 1 completely degrades CV within 60 min. In addition, BiVO4/FeVO4 was investigated for the electrochemical detection of the useful analyte ascorbic acid using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry techniques. This work reveals the potential of the BiVO4/FeVO4 nanocomposite for applications in environmental disciplines as well as in biosensing.

12.
RSC Adv ; 8(62): 35403-35412, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-35547929

ABSTRACT

In this study, a Zn3(VO4)2/BiVO4 heterojunction nanocomposite photocatalyst was prepared using a hydrothermal route with different molar concentration ratios. The as-synthesized nanophotocatalyst was characterized using XRD, SEM, EDS, XPS, FT-IR, Raman, BET, UV-vis DRS, EPR and PL. The effect of molar ratio on composition and morphology was studied. The as-prepared nanocomposite exhibited excellent photocatalytic response by completely degrading the model pollutant methylene blue (MB) dye in 60 min at molar concentration ratio of 2 : 1. In basic medium at pH 12, the Zn3(VO4)2/BiVO4 nanocomposite degrades MB completely within 45 min. The nanocomposite was also successfully used for the electrochemical detection of an important analyte hydrogen peroxide (H2O2). This study opens up a new horizon for the potential applications of Zn3(VO4)2/BiVO4 nanocomposite in environmental wastewater remediation as well as biosensing sciences.

13.
Sci Rep ; 7(1): 10997, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887449

ABSTRACT

Recently, advanced designs and materials emerge to study biologically inspired neuromorphic circuit, such as oxide semiconductor devices. The existence of mobile ions in the oxide semiconductors could be somewhat regarded to be similar with the case of the ions movements among the neurons and synapses in the brain. Most of the previous studies focus on the spike time, pulse number and material species: however, a quantitative modeling is still needed to study the voltage dependence of the relaxation process of synaptic devices. Here, the gate pulse stimulated currents of oxide semiconductor devices have been employed to mimic and investigate artificial synapses functions. The modeling for relaxation process of important synaptic behaviors, excitatory post-synaptic current (EPSC), has been updated as a stretched-exponential function with voltage factors in a more quantitative way. This quantitative modeling investigation of representative synaptic transmission bias impacts would help to better simulate, realize and thus control neuromorphic computing.

14.
Oman Med J ; 25(2): 128-30, 2010 Apr.
Article in English | MEDLINE | ID: mdl-22125715

ABSTRACT

Reversible, predominant posterior leucoencephalopathy may develop in patient with preeclampsia, eclampsia or delayed PPE. Its clinicoradiological diagnosis is characterized by clinical findings of headache, visual perception defect, altered mental status, and seizures, in conjunction with radiological findings of posterior cerebral whitematter edema/hypodensities.

SELECTION OF CITATIONS
SEARCH DETAIL