Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
Discov Oncol ; 15(1): 162, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743146

Exosomes are small extracellular vesicles (30-150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.

2.
Dev Biol ; 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38492873

The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.

3.
Oxid Med Cell Longev ; 2024: 6654606, 2024.
Article En | MEDLINE | ID: mdl-38425997

Background: Neurological disorders like Alzheimer's disease (AD) and Parkinson's disease (PD) manifest through gradually deteriorating cognitive functions. An encouraging strategy for addressing these disorders involves the inhibition of precursor-cleaving enzyme 1 (BACE1). Objectives: In the current research, a virtual screening technique was employed to identify potential BACE1 inhibitors among selected herbal isolates. Methods: This study evaluated 79 flavonoids, anthraquinones (AQs), and cinnamic acid derivatives for their potential blood-brain barrier (BBB) permeability. Using the AutoDock 4.0 tool, molecular docking analysis was conducted to determine the binding affinity of BBB permeable compounds to the BACE1 active site. Molecular dynamics (MD) simulations were performed to assess the stability of the docked poses of the most potent inhibitors. The interactions between the most effective plant-based inhibitors and the residues within the BACE1 catalytic site were examined before and after MD simulations. Results: Ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine were among the highest-ranking BACE1 inhibitors, with inhibition constant values calculated in the nanomolar range. Furthermore, during 10 ns simulations, the docked poses of these ligands were observed to be stable. Conclusion: The findings propose that ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine might serve as potential choices for the treatment of AD and PD, laying the groundwork for the creation of innovative BACE1 inhibitors.


Alzheimer Disease , Anthraquinones , Coumaric Acids , Parkinson Disease , Humans , Alzheimer Disease/metabolism , Molecular Docking Simulation , Parkinson Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism
4.
AMB Express ; 14(1): 33, 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38522056

This clinical trial aimed to assess the impact of Nutrition Bio-shield superfood (NBS) on clinical status among critically ill ICU patients suffering from acute respiratory distress syndrome (ARDS) due to the Omicron variant of COVID-19. A total of 400 patients with confirmed Omicron-related ARDS were randomly assigned to either the intervention group (n = 200) or the control group (n = 200). Patients in the intervention group received 1.5 g of NBS powder daily for 2 weeks in addition to standard antiviral treatment, while the control group received a placebo alongside standard antiviral therapy. Serum samples were collected from all patients in both groups, and various clinical and laboratory parameters, including ESR, CRP, D-Dimer, CPK, WBC count, lymphocyte count, and lymphocyte percentage, were measured using established methodologies. Following a 14-day intervention period, the intervention group exhibited a significant reduction in mean serum levels of CRP (15.39 vs. 48.49; P < 0.001), ESR (14.28 vs. 34.03; P < 0.001), D-Dimer (485.18 vs. 1009.13; P = 0.001), and CPK (68.93 vs. 131.48; P < 0.001) compared to the control group. Conversely, a significant increase was observed in the mean serum levels of lymphocytes (1537.06 vs. 1152.60; P < 0.001) in the intervention group after 14 days of treatment compared to the control group. The remarkable reduction in inflammatory markers and mortality rates observed with NBS supplementation alongside standard antiviral treatment underscores its crucial role in mitigating inflammation and achieving an important milestone in the fight against COVID-19.

5.
Mol Biol Rep ; 50(12): 10047-10059, 2023 Dec.
Article En | MEDLINE | ID: mdl-37902908

BACKGROUND: Single-target inhibitors have not been successful in cancer treatment due to the development of drug resistance. Nevertheless, therapeutic agents capable of simultaneously inhibiting multiple targets have revealed encouraging results in inducing apoptosis and overcoming drug resistance in cancerous cells. Here, we designed a composite liposomal nano-carrier co-loading 5-Fluorouracil (5-FU) with all-trans retinoic acid (ATRA) to assess anticancer efficacy of the combined drugs in colorectal cancer (CRC). METHODS: A PEGylated liposomal nano-carrier with phospholipid/cholesterol/DSPE-PEG (2000) was synthesized by the thin film hydration technique for co-delivery of ATRA and 5-FU. After characterizing, the role of 5-FU and ATRA co-loaded liposomal nano-carrier in proliferation, epithelial-mesenchymal transition (EMT), apoptosis, and cancer stem cells (CSCs) were investigated by using colony forming and MTT assay, RT-qPCR and Annexin V/PI kit. RESULTS: The average size of liposomes (LPs) was < 150 nm with uniform size distribution. Drug release analyses indicated that both ATRA and 5-FU could simultaneously release from LPs in a sustained release manner. The synergistic inhibitory effects of ATRA and 5-FU loaded in LPs were verified with a combination index of 0.43. Dual drug LPs showed the highest cytotoxicity, enhanced inhibition of cell proliferation, increased apoptotic potential, decreased CSCs, and attenuated EMT-associated biomarkers. Also, dual drug LPs decreased ß-catenin gene expression more than other liposomal formulations. CONCLUSION: These findings suggest that using LPs to achieve a synergistic effect of ATRA and 5-FU is an effectual approach to increase the therapeutic effect of 5-FU toward CRC cells.


Colorectal Neoplasms , Fluorouracil , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Liposomes , Lipopolysaccharides , Tretinoin/pharmacology , Polyethylene Glycols , Colorectal Neoplasms/drug therapy , Cell Line, Tumor
6.
Article En | MEDLINE | ID: mdl-37325423

The study was designed to assay the efficacy of cenicriviroc (CVC) on the progression of mouse colorectal cancer by downregulation of CCR2_CCL2. In this study, CVC was used to inhibit the CCR2 receptor. Next, an MTT assay was performed to evaluate the cytotoxic effects of CVC on the CT26 cell line. CT26 cells were implanted subcutaneously in BALB/c mice. After tumor implantation, one group of animals received 20 mg/kg of CVC several times. The mRNA levels of CCR2, CCL2, VEGF, NF-κB, c-Myc, vimentin, and IL33 were determined in the CT26 cell line and then tumor tissues (after 21 days), by qRT-PCR. Protein levels of the above-mentioned targets were determined by western blot and ELISA. Flow cytometry was performed to assess the changes in apoptosis. Tumor growth inhibition was measured on the 1st, 7th, and 21st days after the first treatment. In both cell line and tumor cells treated with CVC, expression levels of the markers of our interest in mRNA and protein levels were significantly reduced compared to controls. A significantly higher apoptotic index was observed in CVC-treated groups. The rates of tumor growth were significantly decreased on the 7th and 21st days after the first injection. To our knowledge, this was the first time that we demonstrated the promising effect of CVC on the development of CRC through inhibition of the CCR2_CCL2 signaling and its downstream biomarkers.

7.
Sci Rep ; 13(1): 3413, 2023 02 28.
Article En | MEDLINE | ID: mdl-36854781

In recent studies, the void of evaluation and in-depth understanding of unknown clinically relevant potential molecular biomarkers involved in colorectal cancer (CRC) from the inflammatory stage of ulcerative colitis (UC) to CRC metastasis, which can be suitable therapeutic targets, is deeply felt. The regulation and interaction among different cancer-promoting molecules, including messenger RNAs (mRNAs) and micro RNAs (miRNAs) in CRC and its progression, were the aim we pursued in this study. Using microarray data, we investigated the differential expression for five datasets, including mRNA and microRNA samples related to UC, tumor/normal. Then, using robust data analysis, separate lists of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) were identified, which were used for robust rank aggregation (RRA) and co-expression network analysis. Then, comprehensive computational systems biology analyses, including gene ontology and Kyoto encyclopedia of genes and genomic pathway enrichment analyses, mRNA-miRNA regulatory network, and survival analysis, were employed to achieve the aim of this study. Finally, we used clinical samples to validate this potential and new target. According to this systems biology approach, a total of 98 DEGs and 8 DEmiRNAs with common differential expression were identified. By combining the distinct results of RRA and network, several potential therapeutic targets, and predictive and prognostic biomarkers for UC and CRC were identified. These targets include six common hub genes, CXCL1, CXCL8, MMP7, SLCA16A9, PLAU, and TIMP1, which are upregulated. Among these, the important and new biomarker SLC16A9 is negatively regulated by hsa-mir-194-5p, and hsa-miR-378a-5p take. The findings of the present study provide new insight into the pathogenesis of CRC in UC. Our study suggests future evaluation of the functional role of SLC16A9 and hsa-mir-194-5p and hsa-miR-378a-5p in CRC development.


Colitis, Ulcerative , Colorectal Neoplasms , Humans , Colitis, Ulcerative/genetics , Systems Biology , Neoplastic Processes , Biomarkers , Colorectal Neoplasms/genetics
8.
Life Sci ; 311(Pt A): 121156, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36356894

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive type of cancer without any approved targeted therapy. Epigenetic processes have a pivotal role in cancer cell progression and while histone deacetylase 8 (HDAC8) has been proven as a potential oncogene in breast cancer, its underlying molecular mechanism is not known. Therefore, the present study, aimed to evaluate the underlying mechanism of the HDAC8 carcinogenesis in breast cancer progression. METHODS: The potential role of HDAC8 in cancer cell processes such as apoptosis, invasion, migration, angiogenesis, and cancer stem cells (CSCs) markers were evaluated by using flow cytometry Annexin V-FITC/propidium iodide (PI), reverse transcription-polymerase chain reaction (RT-qPCR), Matrigel-coated transwell plates and wound healing assay on both cell lines. The impact of HDAC8 on tumor development was also studied using a breast cancer xenograft model. RESULTS: HDAC8 expression was significantly downregulated in the cell lines, post-transfection with KO-vector. Downregulation of HDAC8 dramatically decreased cell migration, angiogenesis, and invasion while inducing apoptosis in MDAMB-468 and MDA-MB-231 cell lines. HDAC8 knocked out TNBC cell lines had lower levels of cancer stemness markers, such as prominin-1 (CD133), CD44, BMI1, and Aldehyde dehydrogenase 1 (ALDH1). Additionally, the knockout of HDAC8 inhibited tumor growth in a breast cancer xenograft model. CONCLUSION: The findings show that knocking out HDAC8 retains several anticancer actions in BC cells, such as inducing apoptosis, reducing migration, invasion, angiogenesis and removing CSCs markers.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Gene Deletion , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Neoplastic Stem Cells/metabolism , Repressor Proteins/genetics
9.
Eur J Pharmacol ; 936: 175350, 2022 Dec 05.
Article En | MEDLINE | ID: mdl-36306928

Colorectal cancer (CRC) is one of the most challenging malignancies in terms of diagnosis and treatment. Conventional diagnostic methods are primarily based on colonoscopy and often lack accuracy, while standard treatment options typically include chemotherapy, which can be unsuccessful due to side effects and (development of) drug resistance. Although new diagnostic methods and timely screening have decreased the death rate from cancer in developed countries in recent years, there still is an urgent need for (novel) therapeutic strategies that render better disease management and clinical outcomes. Nanoparticles (NPs) have emerged as promising candidates for the improvement of diagnosis and treatment by promoting drug targeting, solubility and bioavailability. For example, NPs can reduce toxicity of drugs by increasing solubility and can be engineered to specifically target malignancies, thereby minimizing unwanted side effects. In this review, we evaluated the potential of implementing various NPs for the diagnosis and treatment of CRC.


Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Humans , Nanoparticles/therapeutic use , Drug Delivery Systems , Biological Availability , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use
10.
Biomed Pharmacother ; 155: 113690, 2022 Nov.
Article En | MEDLINE | ID: mdl-36099793

Severe side effects of chemotherapy agents on vital organs are the major causes of cancer-related mortality, not merely cancer disease. Encapsulating chemotherapeutic molecules in nanocarriers is a justifiable solution in decreasing the risk of their side effects and boosting the efficiency of treatment. The present study has developed the doxorubicin (DOX)-loaded AS1411 (anti-nucleolin) aptamer surface-functionalized exosome (DOX-Apt-Exo) to treat colorectal cancer in both in-vitro and in-vivo experimental models. HEK293-derived exosomes were loaded with DOX through the incubation method with a nearly 13% encapsulation efficiency. Afterwards, the 5-terminal carboxyl group of AS1411-aptamer was converted into amine-reactive NHS esters with EDC/NHS amide coupling chemistry before being conjugated to the amine groups on the exosome surface. DLS and TEM estimated the designed formulation (DOX-Apt-Exo) size of about 200 nm. Aptamer-binding affinity and cellular uptake of DOX-Apt-Exo by nucleolin-overexpressing cancer cells were depicted through fluorescence microscopy. Comparing the in-vitro cytotoxicity impact of DOX-loaded exosomes, either targeted or non-targeted by MTT assay, clearly verified a high effectiveness of ligand-receptor mediated target therapy. Subsequently, in-vivo experiments which were conducted on four groups of ectopic mouse models of colon cancer (5 in each group) demonstrated the tumor growth suppression through professional long-term accumulation and retention of DOX-Apt-Exo at the tumor site by ligand-receptor interaction. The results suggested that AS1411 aptamer-functionalized exosomes can be recommended as a safe and effective system to site-specific drug delivery in possible clinical applications of colon cancer.


Colonic Neoplasms , Exosomes , Nanoparticles , Mice , Animals , Humans , Ligands , HEK293 Cells , Drug Delivery Systems/methods , Cell Line, Tumor , Doxorubicin/therapeutic use , Colonic Neoplasms/drug therapy , Amines/therapeutic use , Amides/therapeutic use , Nanoparticles/chemistry
11.
Front Immunol ; 13: 919402, 2022.
Article En | MEDLINE | ID: mdl-36091037

The present study aimed to evaluate the effects of Nutrition Bio-shield Superfood (NBS) powder on the immune system function and clinical manifestations in patients with COVID-19. We compare the effects of NBS powder on the immune system function and clinical manifestations among two different groups: 1) intervention group receiving standard treatment scheduled according to treatment guidelines plus NBS powder, and 2) control group receiving only the same standard treatment. The serum levels of IL-2, IL-6, IL-17, IFNγ, and TNFα were determined after four weeks of treatment by specific ELISA kits according to the manufacturer's instructions. Finally, the level of immune system stimulation and inflammatory markers were compared at baseline and after intervention in both groups. Data were analyzed using SPSS (version 22). A p-value of ≤ 0.05 was set as significant. A total of 47 patients with COVID-19 (24 patients in the intervention group and 23 patients in the control group) were included in this study. Results showed that the differences in the mean decrease of IL-2, IL-6, and TNF-α in the intervention group in comparison to the control group were 0.93, 10.28, and 8.11 pg/ml, respectively (P<0.001). On the other hand, there was no difference in IL-17, IFNγ, monocytes, eosinophil, and other inflammatory indices between the intervention and control groups. Although NBS powder was able to significantly decrease the levels of some proinflammatory cytokines in patients with COVID-19, however, it is noteworthy that the course of the disease was to large part unaffected by NBS power and there was a reduction independent of treatment. The present study indicates that NBS powder could provide a beneficial anti-inflammatory effect in patients with COVID-19. Hence, NBS in treating patients with COVID-19 shows promise as an adjuvant to the current standard antiviral treatment of such patients. Clinical Trial Registration: https://www.irct.ir, identifier IRCT20200426047206N1.


COVID-19 Drug Treatment , Interleukin-17 , Humans , Interleukin-2 , Interleukin-6 , Monocytes , Powders , Tumor Necrosis Factor-alpha
12.
Bioimpacts ; 12(4): 349-358, 2022.
Article En | MEDLINE | ID: mdl-35975203

Introduction: Colorectal cancer (CRC) is the third most common cancer in the world with high mortality, hence, understanding the molecular mechanisms involved in the tumor progression are important for CRC diagnosis and treatment. MicroRNAs (miRNAs) are key gene expression regulators that can function as tumor suppressors or oncogenes in tumor cells, and modulate angiogenesis as a critical process in tumor metastasis. MiR-1290 has been demonstrated as an onco-miRNA in various types of cancer, however, the role of miR-1290 in CRC is not fully understood. This study aimed to investigate the oncogenic and angiogenic potential of miR-1290 in CRC. Methods: Lenti-miR-1290 was transduced into HCT116, SW480, and human umbilical vein endothelial cells (HUVECs). By bioinformatics analysis, we identified thrombospondin 1 (THBS1) as a novel predicted target for miR-1290. Quantitative real-time PCR, western blotting, and luciferase reporter assay were used to demonstrate suppression of miR-1290 target genes including THBS1, Dickkopf Wnt signaling pathway inhibitor 3 (DKK3), and suppressor of cancer cell invasion (SCAI) in HCT116 and HUVECs. Cell cycle analysis, proliferation, migration and, tube formation were determined by flow cytometry, MTT, wound healing, and tube formation assays, respectively. Results: MiR-1290 significantly decreased the expression of THBS1, DKK3, and SCAI. We demonstrated that miR-1290 enhanced proliferation, migration, and angiogenesis partially through suppression of THBS1, DKK3, and SCAI in CRC. Conclusion: These results suggest a novel function of miR-1290 which may contribute to tumorigenesis and angiogenesis in CRC.

13.
Protein Pept Lett ; 29(7): 605-610, 2022.
Article En | MEDLINE | ID: mdl-35838231

BACKGROUND: SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor for entering the host cells. Production of the ACE2 molecule is important because of its potency to use as a blocker and therapeutic agent against SARS-CoV-2 for the prophylaxis and treatment of COVID-19. OBJECTIVE: The recombinant human ACE2 (rhACE2) is prone to form an inclusion body when expressed in the bacterial cells. METHODS: We used the SUMO tag fused to the rhACE2 molecule to increase the expression level and solubility of the fusion protein. Afterward, the freeze-thawing method plus 2 M urea solubilized aggregated proteins. Subsequently, the affinity of solubilized rhACE2 to the receptor binding domain (RBD) of the SARS-CoV-2 spike was assayed by ELISA and SPR methods. RESULTS: SUMO protein succeeded in increasing the expression level but not solubilization of the fusion protein. The freeze-thawing method could solubilize and recover the aggregated fusion proteins significantly. Also, ELISA and SPR assays confirmed the interaction between solubilized rhACE2 and RBD with high affinity. CONCLUSION: The SUMO tag and freeze- Conclusion: The SUMO tag and freeze-thawing method would be utilized for high-level expression and solubilization of recombinant rhACE2 protein.


Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Protein Binding , SARS-CoV-2 , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Urea/metabolism
14.
Biomed Pharmacother ; 152: 113224, 2022 Aug.
Article En | MEDLINE | ID: mdl-35679720

Alzheimer's disease (AD) is a degenerative disease that causes memory and learning impairments as well as dementia. Coenzyme Q10 (CoQ10) is an anti-inflammatory and anti-oxidative stress supplement that can improve inflammation and oxidative stress associated with AD. This study investigated the effects of drug delivery of COQ10 by exosomes derived from adipose-derived stem cells (ADSCs-Exo) on cognition, memory, and neuronal proliferation in a rat model of Streptozotocin (STZ)-induced AD. Since the establishment of the AD model, the rats have received intraperitoneal injections of CoQ10, Exo, or CoQ10-loaded ADSCs-Exo (Exo+ CoQ10). The passive avoidance test and the Morris water maze (MWM) were used to assess memory and cognition changes. Cell density was determined using histological methods. The expression of BDNF was measured using an ELISA kit. SOX2 expression was determined using immunohistochemistry. According to the results of the MWM and passive avoidance task, Exo+CoQ10 significantly improved STZ-induced memory impairment compared to CoQ10 and Exo groups alone. Furthermore, BDNF expression increased in the STZ-induced rats after Exo+ CoQ10, when compared to the CoQ10 and Exo groups. In addition, Exo+CoQ10 had the highest cell density and SOX2 gene expression, when compared to the CoQ10 and Exo groups. According to the findings of this study, Exo+ COQ10 enhanced cognition and memory deficiency in Alzheimer's disease by boosting BDNF and SOX2 levels in the hippocampus. Hence, the use of exosomes derived from adipose-derived stem cells as the carrier of CoQ10 may increase the therapeutic effect of CoQ10, which can possibly be due to the regenerative properties of the exosomes.


Alzheimer Disease , Exosomes , Neuroprotective Agents , Alzheimer Disease/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Exosomes/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Rats , Stem Cells/metabolism , Streptozocin , Ubiquinone/analogs & derivatives
15.
J Adv Res ; 37: 235-253, 2022 03.
Article En | MEDLINE | ID: mdl-35499045

Background: Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review: This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review: Angioregulatory miRNA-target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.


MicroRNAs , Neoplasms , RNA, Small Untranslated , Biomarkers, Tumor , Endothelial Cells , Humans , Immunotherapy , MicroRNAs/genetics , Neovascularization, Pathologic
16.
Article En | MEDLINE | ID: mdl-35449812

The present study aimed to evaluate the synergic effects of combination therapy on 5-fluorouracil (5-FU) resistance-cancer-associated fibroblasts (CAFs) to treatment. Chemotherapy resistance is an important challenge in colorectal cancer (CRC) eradication attention to the tumor microenvironment (TME) is very important. CAFs in the TME play an essential role in cancer chemoresistance and relapse. Additionally, many patients with advanced CRC show resistance to 5-FU therapy. Anti-tumorigenic activities of ZER, a chemopreventive compound derived from the rhizomes of the wild ginger, have been demonstrated. Synergistic and potentiating effects of combination therapy, using herbal and chemical drugs, can improve patients' response. At the first, CAFs were isolated from a CRC patient and sorted by fluorescent-activated cell sorting (FACS), then, confirmed by flow cytometry, and immunocytochemistry (ICC). The effect of 5-FU and ZER on the cell viability was investigated by MTT assay in a dose and time-dependent manner, after that, the expression of vimentin, ß-catenin, and survivin was quantified. Apoptosis, cell cycle, and invasion were analyzed by flow cytometry and scratch test, respectively. ZER could significantly sensitize CAFs cells to 5-FU. A combination of 5-FU + ZER revealed a marked decrease in the marker of interest in both mRNA and protein levels compared to control groups, including 5-FU, ZER treated, and untreated cells. Functional evaluation of cells in different groups presented significant suppression in migration of CAFs and an apparent increase in cell arrest and apoptosis by 5-FU + ZER treatment.

17.
Int J Mol Cell Med ; 11(4): 334-345, 2022.
Article En | MEDLINE | ID: mdl-37727645

MicroRNAs (miRNAs) have emerged as essential gene expression regulators associated with human diseases such as colorectal cancer (CRC). The purpose of this study was to evaluate the expression of miR-330-3p and its target gene BMI1 in tissue samples of patients with CRC, polyp, and healthy adjacent tissue samples and their association with clinicopathological and demographic factors such as age, tumor stage, grade, and lymph node invasion of the tumor. Following the extraction of total RNA from approximately 50 mg of colon and rectum tissue of 82 patients with CRC, 13 polypoid lesions, and 26 marginal healthy tissues using RiboEx reagent, cDNA synthesis was performed, and then quantitative real-time PCR was used to detect the expression levels of miR-330-3p and BMI1. Alterations in the gene expression were assessed using the 2(-∆∆ CT) method. The expression of miR-330-3p in all of the CRC samples was significantly lower than in adjacent healthy tissues and polyp (P<0.001). BMI1 was up-regulated in 97.9% of CRC tissue compared to healthy adjacent tissues and polyps (P<0.001). A negative reverse correlation between the miR-330-3p and BMI1 gene was observed in the CRC samples (r= -0.882, P<0.001). Down-regulation of miR-330-3p and BMI1 overexpression strongly correlates with higher tumor stage and lymph node invasion. The AUC for miR-330-3p and BMI1expression was 0.982 (sensitivity, 98.5%; specificity, 78.8%), and 0.971 (sensitivity, 97.6%; specificity, 84.6%) (P<0.001), respectively. Our results indicated that miR-330-3p and BMI1 expression probably could be considered potential diagnostic or prognostic biomarkers for CRC patient.

18.
J Gastrointest Cancer ; 53(3): 549-556, 2022 Sep.
Article En | MEDLINE | ID: mdl-34212311

PURPOSE: The therapeutic use of herbal medicines for the diseases, including cancer, is increasing due to their lower side effects. The present research evaluated the effect of Peucedanum chenur chloroformic extract (PCCE) on cell proliferation against HCT-116 human colorectal cancer cell line. METHODS: The cytotoxic effect of PCCE was evaluated by MTT assay. The activity of the Wnt/B-catenin pathway was assayed through measuring the expression of miR-135b, miR-21, and APC genes by real-time PCR. The flow cytometry and scratch tests were used to study the cell cycle and cell migration, respectively. Also, the antioxidant activity of PCCE was measured by DPPH and iron-chelating tests. RESULTS: The results showed the downregulation of miR-135b and miR-21 and overexpression of the APC gene. Furthermore, PCCE decreased the free radicals, cell migration, and cell proliferation. The antioxidant activity of PCCE was confirmed by standard tests. CONCLUSION: Altogether, our findings suggest that purified compounds of PCCE could be developed as a potent chemo-preventive drug for the treatment of CRC.


Colorectal Neoplasms , MicroRNAs , Adenomatous Polyposis Coli Protein , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cell Line, Tumor , Cell Proliferation/genetics , Chloroform/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Genes, APC , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
19.
J Gastrointest Cancer ; 53(2): 299-310, 2022 Jun.
Article En | MEDLINE | ID: mdl-33580870

BACKGROUND: Deregulated PIN1 is associated with cancer development and progression. Herein, for the first time, we evaluate the roles that PIN1 in tumorigenic characteristics of colorectal cancer (CRC) cells. METHODS: In this study, PIN1 expression was knocked down in SW-48 cells by synthetic small interfering RNA (siRNA). After confirming the knockdown of PIN1, cell viability, colony formation, apoptosis, autophagy, cancer stem cell (CSC)-related genes, CSC-related signaling pathways, cell migration, and 5-FU chemosensitivity were evaluated in vitro. RESULTS: Transfection of PIN1 siRNA into SW-48 cells inhibited cancer cell proliferation, migration, and increased apoptosis and autophagy. Transfected SW-48 cells had lower properties of CSCs through the inhibition of ß-catenin and Notch1 gene expression. Moreover, inhibition of PIN1 enhanced the inhibitory effect of 5-FU on SW-48 cell proliferation. CONCLUSION: Our results indicated that targeting of PIN1 serves as a promising therapeutic solution for the suppression of tumor progression processes in CRC.


Colorectal Neoplasms , NIMA-Interacting Peptidylprolyl Isomerase , Apoptosis , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Humans , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplastic Stem Cells/metabolism , RNA, Small Interfering/metabolism
...