Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36125890

ABSTRACT

TGF-ß plays a critical role in maintaining immune cells in a resting state by inhibiting cell activation and proliferation. Resting HIV-1 target cells represent the main cellular reservoir after long-term antiretroviral therapy (ART). We hypothesized that releasing cells from TGF-ß-driven signaling would promote latency reversal. To test our hypothesis, we compared HIV-1 latency models with and without TGF-ß and a TGF-ß type 1 receptor inhibitor, galunisertib. We tested the effect of galunisertib in SIV-infected, ART-treated macaques by monitoring SIV-env expression via PET/CT using the 64Cu-DOTA-F(ab')2 p7D3 probe, along with plasma and tissue viral loads (VLs). Exogenous TGF-ß reduced HIV-1 reactivation in U1 and ACH-2 models. Galunisertib increased HIV-1 latency reversal ex vivo and in PBMCs from HIV-1-infected, ART-treated, aviremic donors. In vivo, oral galunisertib promoted increased total standardized uptake values in PET/CT images in gut and lymph nodes of 5 out of 7 aviremic, long-term ART-treated, SIV-infected macaques. This increase correlated with an increase in SIV RNA in the gut. Two of the 7 animals also exhibited increases in plasma VLs. Higher anti-SIV T cell responses and antibody titers were detected after galunisertib treatment. In summary, our data suggest that blocking TGF-ß signaling simultaneously increases retroviral reactivation events and enhances anti-SIV immune responses.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/drug therapy , Copper Radioisotopes/pharmacology , Copper Radioisotopes/therapeutic use , Anti-Retroviral Agents/therapeutic use , Positron Emission Tomography Computed Tomography , Macaca mulatta , Virus Replication , Transforming Growth Factor beta , Immunity
3.
PLoS Pathog ; 17(11): e1009855, 2021 11.
Article in English | MEDLINE | ID: mdl-34793582

ABSTRACT

Vertical transmission of human immunodeficiency virus (HIV) can occur in utero, during delivery, and through breastfeeding. We utilized Positron Emission Tomography (PET) imaging coupled with fluorescent microscopy of 64Cu-labeled photoactivatable-GFP-HIV (PA-GFP-BaL) to determine how HIV virions distribute and localize in neonatal rhesus macaques two and four hours after oral viral challenge. Our results show that by four hours after oral viral exposure, HIV virions localize to and penetrate the rectal mucosa. We also used a dual viral challenge with a non-replicative viral vector and a replication competent SHIV-1157ipd3N4 to examine viral transduction and dissemination at 96 hours. Our data show that while SHIV-1157ipd3N4 infection can be found in the oral cavity and upper gastrointestinal (GI) tract, the small and large intestine contained the largest number of infected cells. Moreover, we found that T cells were the biggest population of infected immune cells. Thus, thanks to these novel technologies, we are able to visualize and delineate of viral distribution and infection throughout the entire neonatal GI tract during acute viral infection.


Subject(s)
Gastrointestinal Tract/virology , HIV Infections/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/isolation & purification , T-Lymphocytes/virology , Viral Load , Animals , Animals, Newborn , Copper Radioisotopes/analysis , HIV-1/isolation & purification , Humans , Macaca mulatta , Positron Emission Tomography Computed Tomography
4.
PLoS Pathog ; 17(6): e1009632, 2021 06.
Article in English | MEDLINE | ID: mdl-34061907

ABSTRACT

Human immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue. Our results show that HIV virions rapidly disseminate throughout the colon two hours after exposure. The presence of dIgA resulted in an increase in virions and penetration depth in the transverse colon. Moreover, virions were found in the mesenteric lymph nodes two hours after viral exposure, and the presence of dIgA led to an increase in virions in mesenteric lymph nodes. Taken together, these technologies enable in vivo and in situ visualization of antibody-virus interactions and detailed investigations of early events in HIV infection.


Subject(s)
Colon/virology , HIV Antibodies , HIV Infections , Immunoglobulin A, Secretory , Mucous Membrane/virology , Animals , Macaca mulatta , Mucous Membrane/immunology , Positron Emission Tomography Computed Tomography , Rectum
5.
Mucosal Immunol ; 13(1): 118-127, 2020 01.
Article in English | MEDLINE | ID: mdl-31619762

ABSTRACT

We compared outer and inner foreskin tissue from adolescent males undergoing medical male circumcision to better understand signals that increase HIV target cell availability in the foreskin. We measured chemokine gene expression and the impact of sexually transmitted infections (STIs) on the density and location of T and Langerhans cells. Chemokine C-C ligand 27 (CCL27) was expressed 6.94-fold higher in the inner foreskin when compared with the outer foreskin. We show that the density of CD4+CCR5+ cells/mm2 was higher in the epithelium of the inner foreskin, regardless of STI status, in parallel with higher CCL27 gene expression. In the presence of STIs, there were higher numbers of CD4+CCR5+ cells/mm2 cells in the sub-stratum of the outer and inner foreskin with concurrently higher number of CD207+ Langerhans cells (LC) in both tissues, with the latter cells being closer to the keratin surface of the outer FS in the presence of an STI. When we tested the ability of exogenous CCL27 to induce T-cell migration in foreskin tissue, CD4 + T cells were able to relocate to the inner foreskin epithelium in response. We provide novel insight into the impact CCL27 and STIs on immune and HIV-1 target cell changes in the foreskin.


Subject(s)
Bacterial Infections/immunology , CD4-Positive T-Lymphocytes/immunology , Chemokine CCL27/metabolism , Foreskin/metabolism , HIV Infections/immunology , HIV-1/physiology , Langerhans Cells/immunology , Adolescent , Adult , Bacterial Infections/therapy , Cell Movement , Chemokine CCL27/genetics , Circumcision, Male , Foreskin/pathology , Gene Expression Regulation , HIV Infections/therapy , Humans , Male , Sexually Transmitted Diseases , South Africa , Young Adult
6.
Proc Natl Acad Sci U S A ; 114(34): E7169-E7178, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28784755

ABSTRACT

After fusion, HIV delivers its conical capsid into the cytoplasm. To release the contained reverse-transcribing viral genome, the capsid must disassemble in a process termed uncoating. Defining the kinetics, dynamics, and cellular location of uncoating of virions leading to infection has been confounded by defective, noninfectious particles and the stochastic minefield blocking access to host DNA. We used live-cell fluorescent imaging of intravirion fluid phase markers to monitor HIV-1 uncoating at the individual particle level. We find that HIV-1 uncoating of particles leading to infection is a cytoplasmic process that occurs ∼30 min postfusion. Most, but not all, of the capsid protein is rapidly shed in tissue culture and primary target cells, independent of entry pathway. Extended time-lapse imaging with less than one virion per cell allows identification of infected cells by Gag-GFP expression and directly links individual particle behavior to infectivity, providing unprecedented insights into the biology of HIV infection.


Subject(s)
Cytoplasm/virology , HIV Infections/virology , HIV-1/physiology , Virus Uncoating , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , HIV-1/genetics , Host-Pathogen Interactions , Humans , Virus Replication
7.
PLoS Pathog ; 12(9): e1005885, 2016 09.
Article in English | MEDLINE | ID: mdl-27658293

ABSTRACT

Currently, there are mounting data suggesting that HIV-1 acquisition in women can be affected by the use of certain hormonal contraceptives. However, in non-human primate models, endogenous or exogenous progestin-dominant states are shown to increase acquisition. To gain mechanistic insights into this increased acquisition, we studied how mucosal barrier function and CD4+ T-cell and CD68+ macrophage density and localization changed in the presence of natural progestins or after injection with high-dose DMPA. The presence of natural or injected progestins increased virus penetration of the columnar epithelium and the infiltration of susceptible cells into a thinned squamous epithelium of the vaginal vault, increasing the likelihood of potential virus interactions with target cells. These data suggest that increasing either endogenous or exogenous progestin can alter female reproductive tract barrier properties and provide plausible mechanisms for increased HIV-1 acquisition risk in the presence of increased progestin levels.


Subject(s)
Host-Pathogen Interactions/drug effects , Macrophages/drug effects , Mucous Membrane/drug effects , Progestins/therapeutic use , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/drug effects , Vagina/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cervix Uteri/drug effects , Cervix Uteri/immunology , Cervix Uteri/metabolism , Cervix Uteri/virology , Delayed-Action Preparations , Female , Injections, Intramuscular , Lymphocyte Activation/drug effects , Macaca mulatta , Macaca nemestrina , Macrophage Activation/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Medroxyprogesterone Acetate/administration & dosage , Medroxyprogesterone Acetate/therapeutic use , Menstrual Cycle , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/virology , Progestins/administration & dosage , Progestins/metabolism , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , Vagina/immunology , Vagina/metabolism , Vagina/virology , Virus Internalization/drug effects
8.
J Virol ; 89(10): 5569-80, 2015 May.
Article in English | MEDLINE | ID: mdl-25740984

ABSTRACT

UNLABELLED: The majority of human immunodeficiency virus type 1 (HIV-1) transmission events occur in women when semen harboring infectious virus is deposited onto the mucosal barriers of the vaginal, ectocervical, and endocervical epithelia. Seminal factors such as semen-derived enhancer of virus infection (SEVI) fibrils were previously shown to greatly enhance the infectivity of HIV-1 in cell culture systems. However, when SEVI is intravaginally applied to living animals, there is no effect on vaginal transmission. To define how SEVI might function in the context of sexual transmission, we applied HIV-1 and SEVI to intact human and rhesus macaque reproductive tract tissues to determine how it influences virus interactions with these barriers. We show that SEVI binds HIV-1 and sequesters most virions to the luminal surface of the stratified squamous epithelium, significantly reducing the number of virions that penetrated the tissue. In the simple columnar epithelium, SEVI was no longer fibrillar in structure and was detached from virions but allowed significantly deeper epithelial virus penetration. These observations reveal that the action of SEVI in intact tissues is very different in the anatomical context of sexual transmission and begin to explain the lack of stimulation of infection observed in the highly relevant mucosal transmission model. IMPORTANCE: The most common mode of HIV-1 transmission in women occurs via genital exposure to the semen of HIV-infected men. A productive infection requires the virus to penetrate female reproductive tract epithelial barriers to infect underlying target cells. Certain factors identified within semen, termed semen-derived enhancers of virus infection (SEVI), have been shown to significantly enhance HIV-1 infectivity in cell culture. However, when applied to the genital tracts of living female macaques, SEVI did not enhance virus transmission. Here we show that SEVI functions very differently in the context of intact mucosal tissues. SEVI decreases HIV-1 penetration of squamous epithelial barriers in humans and macaques. At the mucus-coated columnar epithelial barrier, the HIV-1/SEVI interaction is disrupted. These observations suggest that SEVI may not play a significant stimulatory role in the efficiency of male-to-female sexual transmission of HIV.


Subject(s)
HIV Infections/transmission , HIV Infections/virology , HIV-1/physiology , HIV-1/pathogenicity , Peptide Fragments/physiology , Protein Tyrosine Phosphatases/physiology , Semen/virology , Vagina/virology , Animals , Cervix Uteri/virology , Female , HIV-1/genetics , Host-Pathogen Interactions , Humans , Macaca mulatta , Male , Mucous Membrane/virology , Peptide Fragments/chemistry , Protein Tyrosine Phosphatases/chemistry , Semen/physiology , Virulence
9.
PLoS Pathog ; 11(3): e1004729, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25748093

ABSTRACT

To gain insight into female-to-male HIV sexual transmission and how male circumcision protects against this mode of transmission, we visualized HIV-1 interactions with foreskin and penile tissues in ex vivo tissue culture and in vivo rhesus macaque models utilizing epifluorescent microscopy. 12 foreskin and 14 cadaveric penile specimens were cultured with R5-tropic photoactivatable (PA)-GFP HIV-1 for 4 or 24 hours. Tissue cryosections were immunofluorescently imaged for epithelial and immune cell markers. Images were analyzed for total virions, proportion of penetrators, depth of virion penetration, as well as immune cell counts and depths in the tissue. We visualized individual PA virions breaching penile epithelial surfaces in the explant and macaque model. Using kernel density estimated probabilities of localizing a virion or immune cell at certain tissue depths revealed that interactions between virions and cells were more likely to occur in the inner foreskin or glans penis (from local or cadaveric donors, respectively). Using statistical models to account for repeated measures and zero-inflated datasets, we found no difference in total virions visualized at 4 hours between inner and outer foreskins from local donors. At 24 hours, there were more virions in inner as compared to outer foreskin (0.0495 +/- 0.0154 and 0.0171 +/- 0.0038 virions/image, p = 0.001). In the cadaveric specimens, we observed more virions in inner foreskin (0.0507 +/- 0.0079 virions/image) than glans tissue (0.0167 +/- 0.0033 virions/image, p<0.001), but a greater proportion was seen penetrating uncircumcised glans tissue (0.0458 +/- 0.0188 vs. 0.0151 +/- 0.0100 virions/image, p = 0.099) and to significantly greater mean depths (29.162 +/- 3.908 vs. 12.466 +/- 2.985 µm). Our in vivo macaque model confirmed that virions can breach penile squamous epithelia in a living model. In summary, these results suggest that the inner foreskin and glans epithelia may be important sites for HIV transmission in uncircumcised men.


Subject(s)
Epithelial Cells/virology , Foreskin/virology , HIV Infections/immunology , HIV Infections/transmission , Animals , Cadaver , Circumcision, Male , Epithelial Cells/immunology , Female , Foreskin/immunology , HIV-1 , Humans , Immunohistochemistry , Macaca mulatta , Male , Penis/immunology , Penis/virology
10.
PLoS Pathog ; 10(10): e1004440, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25299616

ABSTRACT

The majority of new HIV infections occur in women as a result of heterosexual intercourse, overcoming multiple innate barriers to infection within the mucosa. However, the avenues through which infection is established, and the nature of bottlenecks to transmission, have been the source of considerable investigation and contention. Using a high dose of a single round non-replicating SIV-based vector containing a novel dual reporter system, we determined the sites of infection by the inoculum using the rhesus macaque vaginal transmission model. Here we show that the entire female reproductive tract (FRT), including the vagina, ecto- and endocervix, along with ovaries and local draining lymph nodes can contain transduced cells only 48 hours after inoculation. The distribution of infection shows that virions quickly disseminate after exposure and can access target cells throughout the FRT, with an apparent preference for infection in squamous vaginal and ectocervical mucosa. JRFL enveloped virions infect diverse CD4 expressing cell types, with T cells resident throughout the FRT representing the primary target. These findings establish a new perspective that the entire FRT is susceptible and virus can reach as far as the ovary and local draining lymph nodes. Based on these findings, it is essential that protective mechanisms for prevention of HIV acquisition must be present at protective levels throughout the entire FRT to provide complete protection.


Subject(s)
Cervix Uteri/virology , HIV Infections/virology , Lymph Nodes/virology , Mucous Membrane/virology , Simian Immunodeficiency Virus , Vagina/virology , Animals , Cell Line , Female , Macaca mulatta , Rats
SELECTION OF CITATIONS
SEARCH DETAIL