Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Proced Online ; 26(1): 22, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969986

ABSTRACT

Peste des petits ruminants (PPRV), a highly contagious viral disease, causes significant economic losses concerning sheep and goats. Recently, PPR viruses (PPRVs), have adopted new hosts and lineage IV of PPRVs represents genetic diversity within the same lineage. 350 samples, including blood, swabs, and tissues from sheep/goats, were collected during the 2020-2021 disease outbreaks in Pakistan. These samples were analysed through RT-PCR and three isolates of PPRV with accession numbers, MW600920, MW600921, and MW600922, were submitted to GenBank, based on the partial N-gene sequencing. This analysis provides a better understanding of genetic characterizations and a targeted RT-PCR approach for rapid PPRV diagnosis. An IELISA test was developed using the semi-purified antigen MW600922 isolate grown in Vero cells. The PPRV isolates currently present high divergence with the Turkish strain; conversely, similarities equivalent to 99.73% were observed for isolates collected from Pakistan. The developed indirect ELISA (IELISA) test demonstrated antibody detection rates at dilutions of 1:200 for antibodies (serum) and 1:32 for antigens. In comparison to cELISA, high specificity (85.23%) and sensitivity (90.60%) rates were observed. In contrast to the virus neutralization test (VNT), IELISA was observed to be 100% specific and 82.14% sensitive in its results. Based on these results, serological surveys conducted for PPR antibodies using IELISA can be a more effective strategy on a larger scale. Furthermore, our results demonstrate a significant breakthrough in the research in terms of cost-effectiveness and storage efficiency, and the developed IELISA test is highly recommended for use in developing countries.


Peste des petits ruminants (PPRV) is a transboundary, highly contagious, and economically significant viral disease affecting small ruminants and wildlife. PPRV, a disease that only targets animals, is the focus of the Global Eradication Programme (PPRV GEP), which aims to eradicate the disease by 2030. Following the completion of the first phase of the GEP (2017­2021), Pakistan has initiated the second phase: PPRV presence and the implementation of a control strategy. Rapid and accurate laboratory diagnosis is vital to the disease's effective control and eradication. In the present study, we have improved diagnosis by reverse transcriptase polymerase chain reaction (RT-PCR), which not only can detect low viral concentrations but also contributes to the genetic analysis of lineage-IV viruses. However, the development of cost-effective indirect ELISA (iELISA) may allow for the analysis of serum samples obtained from larger populations of small ruminants.

2.
Theriogenology ; 86(6): 1516-1522, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27321805

ABSTRACT

The present study was carried out to assess various postthaw semen quality parameters for the prediction of fertility in buffalo bull during low-breeding season. Semen (30 ejaculates) was collected from five adult buffalo bulls with artificial vagina (42 °C). Sperm motility parameters, velocity distribution, motion kinematics, and subpopulations were analyzed by computer-aided sperm motion analyzer (CASA). Moreover, sperm visual motility, supravital plasma membrane integrity, viability/acrosome integrity, viability/mitochondrial transmembrane potential, DNA fragmentation/integrity, and morphology were analyzed by phase-contrast microscope, supravital hypoosmotic swelling test, Trypan blue/Giemsa staining, propidium iodide/"5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide" (JC-1) fluorochromes, neutral comet assay/acridine orange assay and wet mount technique, respectively. Outcome of 528 inseminations was analyzed for in vivo fertility. Pearson's correlation coefficients revealed that sperm progressive motility (%), rapid velocity (%), average path velocity (µm/s), straight line velocity (µm/s), subpopulation one (most rapid, and progressive) of motile spermatozoa (%), supravital plasma membrane integrity (%), and viable spermatozoa with intact acrosome (%) were significantly correlated with in vivo fertility (r = 0.64, P < 0.01; r = 0.57, P < 0.01; r = 0.52, P < 0.01; r = 0.56, P < 0.01; r = 0.73, P < 0.001; r = 0.74, P < 0.001; r = 0.88, P < 0.001); whereas nonviable spermatozoa with damaged acrosome or low-mitochondrial transmembrane potential and comet length (µm) of neutral comet assay were negatively associated with in vivo fertility (r = -0.79, r = -0.75, P < 0.001, and r = -0.60, P < 0.05, respectively). Multiple regression analysis reported that combination of semen quality parameters as predictor of fertility were better (R(2) adjusted = 81.30%, P < 0.001) as compared with single parameter (R(2) adjusted = 50.20%, P < 0.007). It is concluded that assessment of CASA parameters and some other sperm structural and functional parameters, that is, integrity of plasma membrane and acrosome, and transmembrane potential of mitochondria were able to predict the in vivo fertility of water buffalo bull during low-breeding season.


Subject(s)
Breeding , Buffaloes , Fertility , Semen Analysis/veterinary , Spermatozoa/physiology , Acrosome , Animals , Cell Membrane/ultrastructure , Cell Survival , DNA Fragmentation , Female , Fertilization , Insemination , Insemination, Artificial/veterinary , Male , Membrane Potential, Mitochondrial , Pregnancy , Seasons , Sperm Motility , Spermatozoa/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL