Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33352260

ABSTRACT

Hydropower plants (HPPs) are a source of "green" energy but also a threat to migrating fish such as the European eel (Anguilla anguilla) owing to the disruption of river connectivity and the obstruction of downstream migration. The impact of HPP are well-documented in terms of fish survival and damages but there is no available information concerning the condition of surviving and unharmed fish. The aim of this study is to assess the impact of the passage through HPP on the survival, the physiological and health status of adult eels. Two trials were carried with variants of the Kaplan turbine - one of the most common types in Europe. After a deliberate passage through the turbines, we studied direct mortality, external and internal damages, stress and immune biomarkers such as plasma cortisol and glucose levels, alternative complement (ACH50), lysozyme and peroxidase activities, and total immunoglobulin (Ig) content. Our results showed a lower survival and a higher external and internal damages rates in the HPP groups. Glucose levels, ACH50, lysozyme and peroxidase activities and TIgc were also affected by the passage depending on HPP characteristics. Those findings suggest a greater energy expenditure and a disruption in innate immunity due to this passage. HPPs can not only have an impact in terms of direct mortality and injuries but also affect the physiological and health condition of the surviving eels. This impact may explain the delayed mortality observed in telemetric studies and the passage through many HPPs may compromise the ability of adult eels to migrate successfully to the ocean.


Subject(s)
Anguilla/physiology , Animal Migration , Endangered Species , Power Plants , Animals , Blood Glucose/analysis , Environment , Hydrocortisone/blood , Immunity, Humoral , Immunoglobulins/blood , Muramidase , Oceans and Seas , Rivers , Stress, Physiological
2.
Article in English | MEDLINE | ID: mdl-32535234

ABSTRACT

Atlantic salmon is an anadromous species migrating from upper-reach nursery areas in rivers to the oceanic feeding areas at smolt stage and inversely at adult stage requiring unimpeded migration routes. However, dams associated with hydroelectric power plants (HPP) disrupt river connectivity and affect fish movement and survival. The objective of the current study was to evaluate the short and mid-term physiological and immune response of Atlantic salmon smolts after passing through Andenne HPP (Meuse River, Belgium). Several parameters were studied after an in situ deliberate passage including direct mortality and external damages, stress and immune biomarkers as plasma cortisol and glucose levels, complement and peroxidase activities, and immune and oxidative stress related gene expression 24 h, 72 h and 120 h after passage. Survival rate was lower and external damages were more important in fish that confronted the HPP compared to the control ones. Moreover, the passage through the turbine affected plasma glucose levels, complement and peroxidase activities and the expression of some immune genes such as lysg, igm and mpo in a timely manner suggesting that this passage can lead to a great energy expenditure and a disruption of innate immunity. Our observations can partially explain the delayed mortality observed in many studies leading to a poor success of restocking programs. HPPs not only have a direct impact in terms of mortalities and injuries but also an indirect one in terms of physiological and immune changes that can compromise Atlantic salmon smolts ability to escape successfully to the ocean.


Subject(s)
Adaptation, Biological/physiology , Animal Migration/physiology , Power Plants , Salmo salar/physiology , Animals , Belgium , Oceans and Seas , Rivers
3.
Sci Rep ; 10(1): 2650, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060347

ABSTRACT

Melatonin is considered as the time-keeping hormone acting on important physiological functions of teleosts. While the influence of melatonin on reproduction and development is well described, its potential role on immune functions has little been considered. In order to better define an immune modulation by the melatonin hormone, we hypothesized that natural variations of photoperiod and subsequent changes in melatonin release profile may act on immune status of pikeperch. Therefore, we investigated during 70 days the effects of two photoperiod regimes simulating the fall and spring in western Europe, on pikeperch physiological and immune responses. Samples were collected at 04:00 and 15:00 at days 1, 37 and 70. Growth, plasma melatonin levels, innate immune markers and expression of immune-relevant genes in head kidney tissue were assessed. While growth and stress level were not affected by the seasonal simulated photoperiods, nocturnal levels of plasma melatonin were photoperiod-dependent. Innate immune markers, including lysozyme, complement, peroxidase and phagocytic activities, were stimulated by the fall-simulated photoperiod and a significant correlation was made with plasma melatonin. In addition to bring the first evidence of changes in fish immunocompetence related to photoperiod, our results provide an additional indication supporting the immunomodulatory action of melatonin in teleosts.


Subject(s)
Biomarkers/metabolism , Melatonin/metabolism , Perches/immunology , Photoperiod , Seasons , Animals , Blood Glucose/metabolism , Brain/metabolism , Dopamine/metabolism , Gene Expression Regulation , Hydrocortisone/blood , Melatonin/blood , Perches/blood , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...