Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Microorganisms ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36838304

ABSTRACT

Antarctic camps pose psychophysiological challenges related to isolated, confined, and extreme (ICE) conditions, including meals composed of sealed food. ICE conditions can influence the microbiome and inflammatory responses. Seven expeditioners took part in a 7-week Antarctic summer camp (Nelson Island) and were evaluated at Pre-Camp (i.e., at the beginning of the ship travel), Camp-Initial (i.e., 4th and 5th day in camp), Camp-Middle (i.e., 19th-20th, and 33rd-34th days), Camp-Final (i.e., 45th-46th day), and at the Post-Camp (on the ship). At the Pre-Camp, Camp-Initial, and Camp-Final, we assessed microbiome and inflammatory markers. Catecholamines were accessed Pre- and Post-Camp. Heart rate variability (HRV), leptin, thyroid stimulating hormone (TSH), and thyroxine (T4) were accessed at all time points. Students' t-tests or repeated-measures analysis of variance (one or two-way ANOVA) followed by Student-Newman-Keuls (post hoc) were used for parametric analysis. Kruskal-Wallis test was applied for non-parametric analysis. Microbiome analysis showed a predominance of Pseudomonadota (34.01%), Bacillota (29.82%), and Bacteroidota (18.54%), followed by Actinomycetota (5.85%), and Fusobacteria (5.74%). Staying in a long-term Antarctic camp resulted in microbiome fluctuations with a reduction in Pseudomonadota-a "microbial signature" of disease. However, the pro-inflammatory marker leptin and IL-8 tended to increase, and the angiogenic factor VEGF was reduced during camp. These results suggest that distinct Antarctic natural environments and behavioral factors modulate oral microbiome and inflammation.

2.
Article in English | MEDLINE | ID: mdl-36767088

ABSTRACT

Physical activity can prevent many organic and mental pathologies. For people living in extreme southern high-latitude environments, weather conditions can affect these activities, altering their psychological well-being and favoring the prevalence of seasonal sensitivity (SS). This study aims to determine the relationships between the practice of physical activity, seasonal sensitivity and well-being in people living in high southern latitudes. A cross-sectional study was conducted, using the Seasonal Pattern Assessment Questionnaire (SPAQ), applying a psychological well-being scale, and determining sports practice according to the recommendations of the World Health Organization (WHO) for the 370 male (n = 209; 55%) and female (n = 173; 45%) participants. The main results indicated that 194 people (52 ± 7.7 years) reported physical activity. High-intensity physical activity practitioners recorded a significantly lower proportion of SS. In terms of psychological well-being, an adverse effect was found between the Seasonal Score Index (SSI) and five subcategories of the Ryff well-being scale. In conclusion, those who perform high-intensity physical activity have a lower SS, and those who have a higher SS have a lower psychological well-being.


Subject(s)
Seasonal Affective Disorder , Humans , Male , Female , Seasonal Affective Disorder/epidemiology , Seasonal Affective Disorder/prevention & control , Seasonal Affective Disorder/psychology , Seasons , Cross-Sectional Studies , Psychological Well-Being , Exercise
3.
J Neurogastroenterol Motil ; 28(3): 483-500, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35799242

ABSTRACT

Background/Aims: Chagasic megacolon is caused by Trypanosoma cruzi, which promotes in several cases, irreversible segmental colonic dilation. This alteration is the major anatomic-clinical disorder, characterized by the enteric nervous system and muscle wall structural damage. Herein, we investigate how T. cruzi -induced progressive colonic structural changes modulate the colonic contractile pattern activity. Methods: We developed a murine model of T. cruzi-infection that reproduced long-term modifications of the enlarged colon. We evaluated colonic and total intestinal transit time in animals. The patterns of motor response at several time intervals between the acute and chronic phases were evaluated using the organ bath assays. Enteric motor neurons were stimulated by electric field stimulation. The responses were analyzed in the presence of the nicotinic and muscarinic acetylcholine receptor antagonists. Western blot was performed to evaluate the expression of nicotinic and muscarinic receptors. The neurotransmitter expression was analyzed by real-time polymerase chain reaction. Results: In the chronic phase of infection, there was decreased intestinal motility associated with decreased amplitude and rhythmicity of intestinal contractility. Pharmacological tests suggested a defective response mediated by acetylcholine receptors. The contractile response induced by acetylcholine was decreased by atropine in the acute phase while the lack of its action in the chronic phase was associated with tissue damage, and decreased expression of choline acetyltransferase, nicotinic subunits of acetylcholine receptors, and neurotransmitters. Conclusions: T. cruzi -induced damage of smooth muscles was accompanied by motility disorders such as decreased intestinal peristalsis and cholinergic system response impairment. This study allows integration of the natural history of Chagasic megacolon motility disorders and opens new perspectives for the design of effective therapeutic.

4.
An Acad Bras Cienc ; 94(suppl 1): e20210501, 2022.
Article in English | MEDLINE | ID: mdl-35648992

ABSTRACT

Open-water diving in a polar environment is a psychophysiological challenge to the human organism. We evaluated the effect of short-term diving (i.e., 10 min) in Antarctic waters on autonomic cardiac control, thyroid hormone concentration, body temperatures, mood, and neuropsychological responses (working memory and sleepiness). Data collection was carried out at baseline, before, and after diving in four individuals divided into the supporting (n=2) and diving (n=2) groups. In the latter group, autonomic cardiac control (by measuring heart rate variability) was also assessed during diving. Diving decreased thyroid-stimulating hormone (effect size = 1.6) and thyroxine (effect size = 2.1) concentrations; these responses were not observed for the supporting group. Diving also reduced both the parasympathetic (effect size = 2.6) and sympathetic activities to the heart (ES > 3.0). Besides, diving reduced auricular (effect size > 3.0), skin [i.e., hand (effect size = 1.2) and face (effect size = 1.5)] temperatures compared to pre-dive and reduced sleepiness state (effect size = 1.3) compared to basal, without changing performance in the working memory test. In conclusion, short-term diving in icy waters affects the hypothalamic-pituitary-thyroid axis, modulates autonomic cardiac control, and reduces body temperature, which seems to decrease sleepiness.


Subject(s)
Diving , Antarctic Regions , Brazil , Diving/physiology , Freezing , Heart Rate/physiology , Humans , Sleepiness , Thyroid Hormones
5.
An Acad Bras Cienc ; 94(suppl 1): e20210593, 2022.
Article in English | MEDLINE | ID: mdl-35239799

ABSTRACT

We evaluated the influence of a 32-day camping in Antarctica on physical performance and exercise-induced thermoregulatory responses. In Brazil, before and after the Antarctic camping, the volunteers performed an incremental exercise at temperate conditions and, two days later, an exercise heat stress protocol (45-min running at 60% of maximum aerobic speed, at 31°C and 60% of relative humidity). In Antarctica, core temperature was assessed on a day of fieldwork, and average values higher than 38.5°C were reported. At pre- and post-Antarctica, physiological (whole-body and local sweat rate, number of active sweat glands, sweat gland output, core and skin temperatures) and perceptual (thermal comfort and sensation) variables were measured. The Antarctic camping improved the participants' performance and induced heat-related adaptations, as evidenced by sweat redistribution (lower in the chest but higher in grouped data from the forehead, forearm, and thigh) and reduced skin temperatures in the forehead and chest during the exercise heat stress protocol. Notwithstanding the acclimatization, the participants did not report differences of the thermal sensation and comfort. In conclusion, staying in an Antarctic camp for 32 days improved physical performance and elicited physiological adaptations to heat due to the physical exertion-induced hyperthermia in the field.


Subject(s)
Thermotolerance , Acclimatization/physiology , Antarctic Regions , Body Temperature/physiology , Exercise/physiology , Hot Temperature , Humans
6.
An Acad Bras Cienc ; 94(suppl 1): e20210396, 2022.
Article in English | MEDLINE | ID: mdl-35195187

ABSTRACT

We summarize and elaborate on the challenges of researching in the field of human health in Antarctica based on the conceptual and methodological specificities of a line of investigation that aims to study the human presence in Antarctica in all of its dimensions (biological, psychological, and socio-anthropological). Herein, we discuss the principal results and limitations of the research carried out by researchers of MEDIANTAR (Antarctic medicine, physiology, and anthropology) group of Programa Antártico Brasileiro in isolated, confined, and extreme environments over the last six years. Fieldwork has been carried out in remote research camps, Brazilian navy ships (Almirante Maximiano/H-41 and Ary Rongel/H-44), and Comandante Ferraz Antarctic Station. Adaptative responses to isolated, confined, and extreme environments were studied based on questionnaires, interviews, participative observation, biological samples, anthropometric, and physiological parameters. Our researchers face the unique situation of concomitantly working under the stressful living conditions that are the object of their investigation. A critical examination of the socio-methodological characteristics and challenges of this research niche indicates the need for exchanging the lessons learned and limitations of these practices with researchers in the humanities field, with attention to the human resources needs in multidisciplinary human-related studies.


Subject(s)
Adaptation, Physiological , Extreme Environments , Antarctic Regions , Brazil , Humans , Research Personnel
7.
Front Physiol ; 12: 769085, 2021.
Article in English | MEDLINE | ID: mdl-34867474

ABSTRACT

Objective: To study the differences in cardiac autonomic modulation in response to muscle fatigue caused by high-intensity exercise during two consecutive competition periods in young swimmers. Methods: Twenty-six competitive swimmers, selected by their training volume, were separated in two groups, females (n = 12 [46%], age: 13.5 ± 1.4 years) and males (n = 14 [54%], age: 13.9 ± 1.7 years), aged between 10 and 16 years, were evaluated five times as follow: (i) 21 days before the first competition (t-0); (ii) two days before (t-1; t-3); and (iii) two days after (t-2; t-4) of the first and second competitions. Morphological measurements (body mass, percentage of total body fat and height), blood pressure, power, and resting heart rate variability (RR with Polar band) were recorded before and after Wingate test at each time. Results: Body fat was higher in females compared to males. However, no differences were found in other morphological parameters. An intra-subject analysis grouped by sex in cardiovascular parameters shows longitudinal variations in systolic pressure and mean pressure among females. Additionally, females depicted higher, very low frequency (VLF, which is intrinsically generated by the heart and strongly associated with emotional stress) after physical fatigue compared to males at t-1. Further, before the competition, the high frequency (HF) component of HRV (parasympathetic drive) was higher in males than females at t-0 and t-4. Conclusion: Our data revealed that males displayed greater parasympathetic reactivity after an anaerobic muscle fatigue test during their competition periods. Contrarily, females had a less cardiac autonomic modulation when comparing the pre-post Wingate test after two consecutive competition periods.

9.
Probiotics Antimicrob Proteins ; 13(5): 1338-1354, 2021 10.
Article in English | MEDLINE | ID: mdl-33759043

ABSTRACT

Antarctica is one of the most pristine and inhospitable regions of the planet, mostly inhabited by microorganisms that survive due to unusual metabolic pathways to adapt to its extreme conditions, which could be interesting for the selection of new probiotics. The aim of the present study was to screen in vitro and in vivo putative probiotics among 254 yeasts isolated from different habitats of Antarctica. In vitro selection evaluated functional (growth at 37 °C, resistance to simulated gastric environment, and to bile salts), safety (degradation of mucin, production of ß-haemolysis and resistance to antifungal drugs), and beneficial (production of antagonistic substances and adhesion to pathogens) properties. Twelve yeasts were able to grow at 37 °C, one of which was eliminated to present ß-haemolytic ability. The remained yeasts resisted to gastric simulation and bile salts, but none presented antagonism against the pathogens tested. Because of the high co-aggregation with Salmonella enterica Typhimurium and growth yield, Rhodotorula mucilaginosa UFMGCB 18377 and Saccharomyces cerevisiae UFMGCB 11120 were selected for in vivo steps using mice challenged with S. Typhimurium. Both yeasts reached high faecal population levels when daily administered, but only R. mucilaginosa UFMGCB 18377 protected mice against Salmonella infection presenting a higher survival and reduced weight loss, bacterial translocation to the liver, sIgA intestinal levels, and intestinal and hepatic MPO and EPO activities. Our in vitro and in vivo results suggest that R. mucilaginosa UFMGCB 18377 presents probiotic potential and deserve further studies as candidate of probiotic by-products. In addition, this is the first screening study of yeasts isolated from Antarctic environments and of Rhodotorula genus for probiotic use.


Subject(s)
Probiotics , Yeasts , Animals , Antarctic Regions , Mice , Rhodotorula
10.
Sensors (Basel) ; 21(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670324

ABSTRACT

Antarctica is a space-analog ICE (isolated, cold, and extreme) environment. Cardiovascular and heart autonomic adjustments are key-adaptive physiological responses to Antarctica, both in summer camps and in research stations winter-over. Research fieldwork in ICE environments imposes limitations such as energy restriction, the need for portable and easy-to-handle resources, and resistance of materials to cold and snow/water. Herein, we present the methods we use for cardiac monitoring in the Antarctic field, the limitations of the equipment currently available, and the specific demands for smart wearables to physiological and health tracking in ICE environments, including the increased remote monitoring demand due to COVID-19 restrictions.


Subject(s)
Extreme Environments , Wearable Electronic Devices , Antarctic Regions , Humans
11.
Int J Circumpolar Health ; 77(1): 1521244, 2018 12.
Article in English | MEDLINE | ID: mdl-30252632

ABSTRACT

Antarctic climate is challenging, since the cold, wind and sensory monotony are stressful stimuli to individuals. Moreover, camp activities and heavy clothes may contribute to increase physiological strain. Thus, we aimed to characterise the physiological demand of a 24-day period in the Antarctic field and then to evaluate the effect of this expedition on the aerobic fitness in individuals with heterogeneous initial aerobic fitness (as determined by estimating maximum oxygen consumption - V̊O2MAX). Before and after the 24-day period in Antarctica, 7 researchers and 2 mountaineers were subjected to incremental tests to estimate their V̊O2MAX. Field effort was characterised by measuring heart rate (HR). During the field trips, their HR remained 33.4% of the recording time between 50-60% HRMAX, 22.3% between 60-70% HRMAX, and only 1.4% between 80 and 90% HRMAX. The changes in estimated V̊O2MAX during the expedition depended on the pre-expedition aerobic fitness. The post-expedition V̊O2MAX increased by 5.9% and decreased by 14.3%in individuals with lower (researchers) and higher (mountaineers) initial V̊O2MAX, respectively. We concluded that physical effort in the Antarctic field is characterised as predominantly of low- to moderate-intensity. This effort represented an effective training load for individuals with lower initial V̊O2MAX, but not for those with higher V̊O2MAX.


Subject(s)
Expeditions , Oxygen Consumption/physiology , Physical Exertion/physiology , Adult , Aged , Antarctic Regions , Body Weights and Measures , Female , Heart Rate , Humans , Longitudinal Studies , Male , Middle Aged , Physical Fitness
12.
Int J Exp Pathol ; 98(4): 191-202, 2017 08.
Article in English | MEDLINE | ID: mdl-28895246

ABSTRACT

Toxoplasmosis represents one of the most common zoonoses worldwide. Its agent, Toxoplasma gondii, causes a severe innate pro-inflammatory response. The indigenous intestinal microbiota promotes host animal homoeostasis and may protect the host against pathogens. Germ-free (GF) animals provide an important tool for the study of interactions between host and microbiota. In this study, we assessed the role of indigenous microorganisms in disease development utilizing a murine toxoplasmosis model, which includes conventional (CV) and GF NIH Swiss mice. CV and GF mice orally inoculated with T. gondii had similar survival curves. However, disease developed differently in the two animal groups. In CV mice, intestinal permeability increased and levels of intestinal pro-inflammatory cytokines were altered. In GF animals, there were discrete epithelial degenerative changes and mucosal oedema, but the liver and lungs displayed significant lesions. We conclude that, despite similar survival curves, CV animals succumb to an exaggerated inflammatory response, whereas GF mice fail to produce an adequate systemic response.


Subject(s)
Intestines/microbiology , Microbiota , Toxoplasma , Toxoplasmosis/microbiology , Animals , Cytokines/metabolism , Female , Inflammation/microbiology , Lung/microbiology , Male , Mice
13.
Microbiology (Reading) ; 161(10): 1950-1960, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26224606

ABSTRACT

Mucositis is one of the most debilitating side effects of chemotherapy and some previous studies suggest a role for indigenous microbiota in the course of this pathology. Therefore, the aim of our study was to evaluate the differences in phenotype between germ-free (GF) and conventional (CV) mice, and the role of ß-glucuronidase-producing bacteria in the development of irinotecan treatment in a murine model. After mucositis induction, CV mice showed a significant increase in all inflammatory parameters when compared to GF mice. CV animals also showed more lesions of the intestinal epithelium, coherent with their higher intestinal permeability. The conventionalization of GF animals reversed their phenotype to that found in CV mice. In addition, gnotobiotic mice monoassociated with an Escherichia coli strain producing ß-glucuronidase showed an increased permeability when compared to gnotobiotic mice monoassociated with an E. coli strain deleted for the gene encoding ß-glucuronidase, but these did not show any differences in the influx of neutrophils, eosinophils or histological characteristics. Our data confirmed that components of the gut microbiota are involved in the signs of mucositis. Nevertheless, other mechanisms than this enzyme are involved in the irinotecan treatment, since the monoassociation was not able to restore the entire phenotype observed in the CV animals with irinotecan treatment in our murine model.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Camptothecin/analogs & derivatives , Mucositis/chemically induced , Animals , Bacteria/metabolism , Camptothecin/administration & dosage , Camptothecin/adverse effects , Gastrointestinal Microbiome , Germ-Free Life , Intestinal Mucosa/pathology , Irinotecan , Mice
14.
Int J Environ Res Public Health ; 11(9): 8755-76, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25162711

ABSTRACT

Two strains of Lactobacillus, previously isolated from bovine faeces and tested in vitro for properties desired in probiotics, were evaluated for their in vivo effectiveness in protecting against experimental salmonellosis. L. salivarius L38 and L. acidophilus L36 previously demonstrated the ability to successfully colonize the gastrointestinal tract of germ-free mice and stimulate the immune system associated with the intestinal mucosa. L38- or L36-feeding showed no detrimental effect on the general health indicators and did not induce changes in normal architecture of liver and small intestine, indicating that the use of these strains is apparently safe. In control animals fed L38 strain, several cytokines had augmented mRNA levels that can be associated with a homeostatic state of intestinal mucosa, while L36 had less diverse regulation. IgA production and secretion in the intestinal lumen induced by infection was abrogated by pretreating with both lactobacilli. In addition, liver and small intestine histological scores and, translocation of Salmonella cells to liver and spleen, indicated that these strains did not confer protection against the infection. So, the IL-12:IL-18àIFN-g axis, essential for an effective immune response against Salmonella, was not favored with L38 or L36 strains. However, increased expression of IL-10 in different portions of the gastrointestinal tract of L38-fed animals is indicative of anti-inflammatory effect to be explored furthermore.


Subject(s)
Immunomodulation/drug effects , Lactobacillus/chemistry , Probiotics/pharmacology , Salmonella Infections/drug therapy , Animal Husbandry , Animals , Cattle , Cytokines/metabolism , Disease Models, Animal , Feces/microbiology , Female , Intestines/microbiology , Lactobacillus acidophilus/chemistry , Male , Mice , Models, Biological , Probiotics/administration & dosage , Probiotics/adverse effects , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Salmonella/physiology , Salmonella Infections/microbiology
15.
Eur J Immunol ; 44(10): 2949-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25091816

ABSTRACT

During oral infection, mucosal immunity assumes a predominant role. Here, we addressed the role of mast cells (MCs), which are mainly located in mucosa during oral infection with Toxoplasma gondii, using MC-deficient (W/W(v) ) mice. We show that in the absence of MCs the resistance of W/W(v) mice to oral infection was considerably reduced. W/W(v) mice uniformly succumbed within 15 days of infection after administration of cysts of the ME49 strain of T. gondii. The rapid lethality of T. gondii in W/W(v) mice correlated with a delayed Th1-cell response, since IFN-γ and IL-12 levels peaked in the later phase of the infection. In vitro, BM-derived MCs were able to recognize parasite lysate in a MyD88-dependent way, reaffirming the role of this TLR adapter in immune responses to T. gondii. The importance of MCs in vivo was confirmed when W/W(v) mice reconstituted with BM-derived MCs from control mice retrieved an early strong Th1-cell response and specially a significant IL-12 production. In conclusion, MCs play an important role for the development of a protective immune response during oral infection with T. gondii.


Subject(s)
Immunity, Mucosal/immunology , Mast Cells/immunology , Toxoplasmosis, Animal/immunology , Animals , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/immunology , Toxoplasma/immunology
16.
Br J Nutr ; 111(1): 93-100, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-23773381

ABSTRACT

Glutamine may be a precursor for NO synthesis, which may play a crucial role in bacterial translocation (BT). The goal of the present study was to investigate the potential effects of glutamine on BT and the immunological response in an experimental model of NO synthase inhibition by NG-nitro-L-arginine methyl ester (l-NAME). Mice were randomly assigned to four groups: sham; intestinal obstruction (IO); IO+500 mg/kg per d glutamine (GLN); IO+GLN plus 10 mg/kg per d l-NAME (GLN/LN). The groups were pretreated for 7 d. BT was induced by ileal ligation and was assessed 18 h later by measuring the radioactivity of 99mTc-Escherichia coli in the blood and organs. Mucosal damage was determined using a histological analysis. Intestinal permeability (IP) was assessed by measuring the levels of 99mTc-diethylenetriaminepentaacetic acid in the blood at 4, 8 and 18 h after surgery. IgA and cytokine concentrations were determined by ELISA in the intestinal fluid and plasma, respectively. BT was increased in the GLN/LN and IO groups than in the GLN and sham groups. IP and intestinal mucosa structure of the sham, GLN and GLN/LN groups were similar. The GLN group had the highest levels of interferon-γ, while IL-10 and secretory IgA levels were higher than those of the IO group but similar to those of the GLN/LN group. The present results suggest that effects of the glutamine pathway on BT were mediated by NO. The latter also interferes with the pro-inflammatory systemic immunological response. On the other hand, IP integrity preserved by the use of glutamine is independent of NO.


Subject(s)
Bacterial Translocation , Glutamine/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Intestinal Obstruction , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/metabolism , Animals , Bacterial Translocation/drug effects , Enzyme Inhibitors/pharmacology , Escherichia coli , Glutamine/pharmacology , Ileum/drug effects , Ileum/microbiology , Ileum/pathology , Immunoglobulin A/metabolism , Immunoglobulin A, Secretory/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestinal Obstruction/microbiology , Intestinal Obstruction/pathology , Ligation , Male , Mice , Mice, Inbred Strains , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/immunology , Pentetic Acid/blood , Permeability , Signal Transduction
17.
Mar Drugs ; 11(7): 2595-615, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23873335

ABSTRACT

Lithothamnion muelleri (Hapalidiaceae) is a marine red alga, which is a member of a group of algae with anti-inflammatory, antitumor, and immunomodulatory properties. The present study evaluated the effects of treatment with Lithothamnion muelleri extract (LM) in a model of acute graft-versus-host disease (GVHD), using a model of adoptive splenocyte transfer from C57BL/6 donors into B6D2F1 recipient mice. Mice treated with LM showed reduced clinical signs of disease and mortality when compared with untreated mice. LM-treated mice had reduced tissue injury, less bacterial translocation, and decreased levels of proinflammatory cytokines and chemokines (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5)). The polysaccharide-rich fraction derived from LM could inhibit leukocyte rolling and adhesion in intestinal venules, as assessed by intravital microscopy. LM treatment did not impair the beneficial effects of graft-versus-leukaemia (GVL). Altogether, our studies suggest that treatment with Lithothamnion muelleri has a potential therapeutic application in GVHD treatment.


Subject(s)
Anti-Inflammatory Agents/immunology , Graft vs Host Disease/immunology , Inflammation/immunology , Rhodophyta/immunology , Animals , Cell Adhesion/immunology , Cell Line , Cytokines/immunology , Disease Models, Animal , Endothelial Cells/immunology , Intestines/immunology , Leukocytes/immunology , Liver Diseases/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL
18.
Microbes Infect ; 15(4): 270-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23376166

ABSTRACT

Growing evidences suggest that Saccharomyces boulardii (SB) is efficacious against bacterial infections and inflammatory bowel diseases. This study investigated the effects of treatment with SB provided in a murine model of typhoid fever. Mice were divided into two groups: (1) control animals challenged with Salmonella Typhimurium (ST), and (2) animals receiving SB, and then challenged with ST. At days 0, 1, 5, 10 and 15 post-challenge, animals were euthanized and tissues collected to analyze bacterial translocation, cytokines, signaling pathways and histological analysis. Survival rate and animal weight were also evaluated. Treatment with SB increased survival rate and inhibited translocation of bacteria after ST challenge. Histological data showed that SB also protected mice against liver damage induced by ST. SB decreased levels of inflammatory cytokines and activation of mitogen-activated protein kinases (p38, JNK and ERK1/2), phospho-IκB, p65-RelA, phospho-jun and c-fos in the colon, signal pathways involved in the activation of inflammation induced by ST. Further experiments revealed that probiotic effects were due, at least in part, to the binding of ST to the yeast. Such binding diminishes ST translocation, resulting in decreased activation of signaling pathways which lead to intestinal inflammation in a murine model of typhoid fever.


Subject(s)
Bacterial Translocation/immunology , Paratyphoid Fever/immunology , Saccharomyces/immunology , Salmonella typhimurium/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Histocytochemistry , Liver/immunology , Liver/microbiology , Liver/pathology , Mice , Survival Analysis
19.
Infect Immun ; 80(12): 4298-308, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23027530

ABSTRACT

Interleukin-1 receptor (IL1R)-associated kinase 4 (IRAK4) is a member of the IRAK family and has an important role in inducing the production of inflammatory mediators. This kinase is downstream of MyD88, an adaptor protein essential for Toll-like receptor (TLR) function. We investigated the role of this kinase in IRAK4-deficient mice orally infected with the cystogenic ME49 strain of Toxoplasma gondii. IRAK4(-/-) mice displayed higher morbidity, tissue parasitism, and accelerated mortality than the control mice. The lymphoid follicles and germinal centers from infected IRAK4(-/-) mice were significantly smaller. We consistently found that IRAK4(-/-) mice showed a defect in splenic B cell activation and expansion as well as diminished production of gamma interferon (IFN-γ) by T lymphocytes. The myeloid compartment was also affected. Both the frequency and ability of dendritic cells (DCs) and monocytes/macrophages to produce IL-12 were significantly decreased, and resistance to infection with Toxoplasma was rescued by treating IRAK4(-/-) mice with recombinant IL-12 (rIL-12). Additionally, we report the association of IRAK4 haplotype-tagging single nucleotide polymorphisms (tag-SNPs) with congenital toxoplasmosis in infected individuals (rs1461567 and rs4251513, P < 0.023 and P < 0.045, respectively). Thus, signaling via IRAK4 is essential for the activation of innate immune cells, development of parasite-specific acquired immunity, and host resistance to infection with T. gondii.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/deficiency , Toxoplasma/pathogenicity , Toxoplasmosis, Congenital/genetics , Toxoplasmosis/immunology , Adult , Animals , B-Lymphocytes/immunology , Child , Child, Preschool , Disease Susceptibility , Female , Genotype , Humans , Immunity, Innate , Interleukin-1 Receptor-Associated Kinases/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/immunology , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/pathology , Toxoplasmosis, Congenital/immunology , Toxoplasmosis, Congenital/parasitology , Toxoplasmosis, Congenital/pathology
20.
Am J Pathol ; 181(1): 130-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22658486

ABSTRACT

Infection with Trypanosoma cruzi induces inflammation, which limits parasite proliferation but may result in chagasic heart disease. Suppressor of cytokine signaling 2 (SOCS2) is a regulator of immune responses and may therefore participate in the pathogenesis of T. cruzi infection. SOCS2 is expressed during T. cruzi infection, and its expression is partially reduced in infected 5-lipoxygenase-deficient [knockout (KO)] mice. In SOCS2 KO mice, there was a reduction in both parasitemia and the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-10, SOCS1, and SOCS3 in the spleen. Expression of IFN-γ, TNF-α, SOCS1, and SOCS3 was also reduced in the hearts of infected SOCS2 KO mice. There was an increase in the generation and expansion of T regulatory (Treg) cells and a decrease in the number of memory cells in T. cruzi-infected SOCS2 KO mice. Levels of lipoxinA(4) (LXA(4)) increased in these mice. Echocardiography studies demonstrated an impairment of cardiac function in T. cruzi-infected SOCS2 KO mice. There were also changes in calcium handling and in action potential waveforms, and reduced outward potassium currents in isolated cardiac myocytes. Our data suggest that reductions of inflammation and parasitemia in infected SOCS2-deficient mice may be secondary to the increases in Treg cells and LXA(4) levels. This occurs at the cost of greater infection-associated heart dysfunction, highlighting the relevance of balanced inflammatory and immune responses in preventing severe T. cruzi-induced disease.


Subject(s)
Chagas Cardiomyopathy/immunology , Suppressor of Cytokine Signaling Proteins/immunology , Acute Disease , Animals , Arachidonate 5-Lipoxygenase/physiology , Cells, Cultured , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/pathology , Chagas Cardiomyopathy/physiopathology , Cytokines/biosynthesis , Disease Models, Animal , Heart/parasitology , Lipoxins/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/immunology , Parasite Load , Parasitemia/immunology , Patch-Clamp Techniques , Suppressor of Cytokine Signaling Proteins/deficiency , T-Lymphocyte Subsets/immunology , Trypanosoma cruzi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL