Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 94(suppl 3): e20211433, 2022.
Article in English | MEDLINE | ID: mdl-36197364

ABSTRACT

Biosurfactants and waterflooding have been widely reported thus far for enhancing oil production. Nevertheless, there is a lack of literature to explore enhanced oil recovered methods effects on its chemical composition. The aim of this work is to investigate the effects of a biosurfactant produced by Bacillus safensis and brine injection on the recovered petroleum composition, and their implications for geochemical interpretation. Original and oils recovered from displacement tests were analyzed by gas chromatography and ultra-high-resolution mass spectrometry, emphasizing saturated and aromatic biomarkers and basic and acidic polar compounds. Geochemical parameters based on some saturated compounds were subtly affected by the recovery methods, showing their reliable applicability in geochemical studies. Contrarily, parameters based on some aromatic compounds were more affected by biosurfactant flooding, mostly the low molecular weight compounds. Thus, these aromatic parameters should be applied with caution after such methods. The distribution of basic and acidic polar compounds can also be modified affecting the geochemical interpretation. In the case of the basic ones, the biosurfactant greatly influenced the N class species with favorable loss of lower aromaticity compounds. In addition to water solubilization, the compositional changes described in this study can be related to fractionation due to adsorption on reservoir rocks.


Subject(s)
Petroleum , Surface-Active Agents , Gas Chromatography-Mass Spectrometry , Oils , Surface-Active Agents/analysis , Surface-Active Agents/chemistry , Water
2.
An Acad Bras Cienc ; 92(3): e20200214, 2020.
Article in English | MEDLINE | ID: mdl-33295485

ABSTRACT

The presence of acidic compounds as naphthenic acids in crude oil causes several problems for the petroleum industry, including corrosion in both upstream and downstream production processes. Based on this scenario, the main objective of this work was to investigate the removal of the acidic compound from two Brazilian heavy oils by adsorption processes using six potential adsorbents: powdered shale, activated carbon, bentonite, silica gel, powdered sandstone and powdered wood. These raw materials were previously characterized by conventional and surface analysis techniques, which show that they offer a good surface area and thermal stability. To evaluate the removal efficiency at the molecular level, the crude oil samples and the filtered oils were analyzed by negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry [ESI (-) FTICR MS]. The O2 class, which is related to the relatively high acidity of the samples, was the most abundant in both crude oil samples, moreover, this class was more retained by adsorbents. Silica gel, activated carbon and bentonite were the best adsorbents of acidic compounds from the tested oils, in agreement with their markedly higher surface area and porous volume. Additionally, a chromatographic analysis was performed and showed no changes in the oil profile.


Subject(s)
Petroleum , Brazil , Fourier Analysis , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...