Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38416412

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

2.
Angew Chem Int Ed Engl ; 63(1): e202313348, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-37970660

The ethylene polymerization Phillips catalyst has been employed for decades and is central to the polymer industry. While Cr(III) alkyl species are proposed to be the propagating sites, there is so far no direct experimental evidence for such proposal. In this work, by coupling Surface organometallic chemistry, EPR spectroscopy, and machine learning-supported XAS studies, we have studied the electronic structure of well-defined silica-supported Cr(III) alkyls and identified the presence of several surface species in high and low-spin states, associated with different coordination environments. Notably, low-spin Cr(III) sites are shown to participate in ethylene polymerization, indicating that similar Cr(III) alkyl species could be involved in the related Phillips catalyst.

3.
JACS Au ; 3(7): 1939-1951, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37502165

Propane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances. Chemisorption experiments and density functional calculations reveal a significant change in the electronic structure of the nanoparticles (NPs) due to the Ti-doping. Evaluation of the resulting materials PtZn/SiO2 and PtZnTi/SiO2 during long deactivation phases reveal a stabilizing effect of Ti in PtZnTi/SiO2 with a kd of 0.015 h-1 compared to PtZn/SiO2 with a kd of 0.022 h-1 over 108 h on stream. Such a stabilizing effect is also present during a second deactivation phase after applying a regeneration protocol to the materials under O2 and H2 at high temperatures. A combined scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory study reveals that this effect is related to a sintering prevention of the alloyed PtZn NPs in PtZnTi/SiO2 due to a strong interaction of the NPs with Ti sites. However, in contrast to classical strong metal-support interaction, we show that the coverage of the Pt NPs with TiOx species is not needed to explain the changes in adsorption and reactivity properties. Indeed, the interaction of the Pt NPs with TiIII sites is enough to decrease CO adsorption and to induce a red-shift of the CO band because of electron transfer from the TiIII sites to Pt0.

4.
Chem Sci ; 13(37): 11091-11098, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36320461

The Union Carbide (UC) ethylene polymerization catalysts, based on chromocene dispersed on silica, show distinct features from the Phillips catalysts, but share the same heated debate regarding the structure of their active sites. Based on a combination of IR, EPR spectroscopies, labeling experiments, and DFT modeling, we identified monomeric surface-supported Cr(iii) hydrides, ([triple bond, length as m-dash]SiO)Cr(Cp)-H, as the active sites of the UC catalyst. These sites are formed in the presence of grafted and adsorbed chromocene as well as residual surface OH groups, only possible at high Cr loading, and involve a C-H activation of the Cp ring. These Cr-hydrides initiate polymerization, yielding Cr(iii) alkyl species that insert ethylene through a Cossee-Arlman-type mechanism, as evidenced by spectroscopic studies. These insights inspired the design of a well-defined analog, CpCr(CH(SiMe3)2)2 grafted on partially dehydroxylated silica, that shows similar spectroscopic and polymer structure to the UC catalyst, further supporting the proposed active site structure.

5.
J Am Chem Soc ; 143(26): 9791-9797, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34169715

Despite decades of extensive studies, the atomic-scale structure of the active sites in heterogeneous Ziegler-Natta (ZN) catalysts, one of the most important processes of the chemical industry, remains elusive and a matter of debate. In the present work, the structure of active sites of ZN catalysts in the absence of ethylene, referred to as dormant active sites, is elucidated from magnetic resonance experiments carried out on samples reacted with increasing amounts of BCl3 so as to enhance the concentration of active sites and observe clear spectroscopic signatures. Using electron paramagnetic resonance (EPR) and NMR spectroscopies, in particular 2D HYSCORE experiments complemented by density functional theory (DFT) calculations, we show that the activated ZN catalysts contain bimetallic alkyl-Ti(III),Al species whose amount is directly linked to the polymerization activity of MgCl2-supported Ziegler-Natta catalysts. This connects those spectroscopic signatures to the active species formed in the presence of ethylene and enables us to propose an ethylene polymerization mechanism on the observed bimetallic alkyl-Ti(III),Al species based on DFT computations.

6.
Angew Chem Int Ed Engl ; 60(29): 16200-16207, 2021 Jul 12.
Article En | MEDLINE | ID: mdl-34132453

The selective conversion of methane to methanol remains one of the holy grails of chemistry, where Cu-exchanged zeolites have been shown promote this reaction under stepwise conditions. Over the years, several active sites have been proposed, ranging from mono-, di- to trimeric CuII . Herein, we report the formation of well-dispersed monomeric CuII species supported on alumina using surface organometallic chemistry and their reactivity towards the selective and stepwise conversion of methane to methanol. Extensive studies using various transition alumina supports combined with spectroscopic characterization, in particular electron paramagnetic resonance (EPR), show that the active sites are associated with specific facets, which are typically found in γ- and η-alumina phase, and that their EPR signature can be attributed to species having a tri-coordinated [(Al2 O)CuIIO(OH)]- T-shape geometry. Overall, the selective conversion of methane to methanol, a two-electron process, involves two monomeric CuII sites that play in concert.

7.
Chem Sci ; 12(2): 780-792, 2020 Nov 11.
Article En | MEDLINE | ID: mdl-34163812

While Ti(iii) alkyl species are the proposed active sites in Ziegler-Natta ethylene polymerization catalysts, the corresponding well-defined homogeneous catalysts are not known. We report that well-defined neutral ß-diiminato Ti(iii) alkyl species, namely [Ti(nacnac)(CH2 t Bu)2] and its alumina-grafted derivative [(AlsO)Ti(nacnac)(CH2 t Bu)], are active towards ethylene polymerization at moderate pressures and temperatures and possess an electron configuration well-adapted to insertion of ethylene. Advanced EPR spectroscopy showed that ethylene insertion into a Ti(iii)-C bond takes place during polymerization from Ti(nacnac)(CH2 t Bu)2. A combination of pulsed EPR spectroscopy and DFT calculations, based on a crystal structure of [Ti(nacnac)(CH2 t Bu)2], enabled us to reveal details about the structure and electronic configurations of both molecular and surface-grafted species. For both compounds, the α-agostic C-H interaction, which involves the singly occupied molecular orbital, indicates a π character of the metal-carbon bond; this π character is enhanced upon ethylene coordination, leading to a nearly barrier-less C2H4 insertion into Ti(iii)-C bonds after this first step. During coordination, back donation from the SOMO to the π*(C2H4) occurs, leading to stabilization of π-ethylene complexes and to a significant lowering of the overall energy of the C2H4 insertion transition state. In d1 alkyl complexes, ethylene insertion follows an original "augmented" Cossee-Arlman mechanism that involves the delocalization of unpaired electrons between the SOMO, π*(C2H4) and σ*(Ti-C) in the transition state, which further favors ethylene insertion. All these factors facilitate ethylene polymerization on Ti(iii) neutral alkyl species and make d1 alkyl complexes potentially more effective polymerization catalysts than their d0 analogues.

8.
Angew Chem Int Ed Engl ; 57(44): 14533-14537, 2018 10 26.
Article En | MEDLINE | ID: mdl-29949230

The structure of paramagnetic surface species is notoriously difficult to determine. For TiIII centers related to Ziegler-Natta catalysis, we demonstrate here that detailed structural information can be obtained by advanced EPR spectroscopy and DFT computations, benchmarked on molecular analogs. The hyperfine sublevel correlation (HYSCORE) spectra obtained after reaction with 13 C-labeled ethylene provides information about the coupling with a proton in the first coordination sphere of TiIII as well as significant 13 C hyperfine coupling and thereby allows structural assignment of the surface species.

...