ABSTRACT
Marek's disease is caused by Mardivirus gallidalpha2, commonly known as Marek's disease virus (MDV). This pathogen infects various bird species resulting in a range of clinical manifestations. The meq gene, which is crucial for oncogenesis, has been extensively studied, but molecular investigations of MDV in noncommercial South American birds are limited. This study detected MDV in backyard and ornamental birds from Brazil and Peru and characterized the meq gene. MDV was confirmed in all seven outbreaks examined. Three isoforms of meq (S-meq, meq, and L-meq) and two to seven proline repeat regions (PRRs) were detected among the sequenced strains. At the amino acid level, genetic profiles with low and high virulence potential were identified. Phylogenetic analysis grouped the sequences into three distinct clusters. Selection pressure analysis revealed 18 and 15 codons under positive and negative selection, respectively. The results demonstrate significant MDV diversity in the studied birds, with both high and low virulence potentials. This study highlights the importance of monitoring and characterizing circulating MDV in backyard and ornamental birds, as they can act as reservoirs for future epidemiological outbreaks.
ABSTRACT
Chicken Parvovirus (ChPV) belongs to the genus Aveparvovirus and is implicated in enteric diseases like runting-stunting syndrome (RSS) in poultry. In RSS, chicken health is affected by diarrhea, depression, and increased mortality, causing significant economic losses in the poultry industry. This study aimed to characterize the ChPV genomes detected in chickens with RSS through a metagenomic approach and compare the molecular and evolutionary characteristics within the Aveparvovirus galliform1 species. The intestinal content of broiler flocks affected with RSS was submitted to viral metagenomics. The assembled prevalent genomes were identified as ChPV after sequence and phylogenetic analysis, which consistently clustered separately from Turkey Parvovirus (TuPV). The strain USP-574-A presented signs of genomic recombination. The selective pressure analysis indicated that most of the coding genes in A. galliform1 are evolving under diversifying (negative) selection. Protein modeling of ChPV and TuPV viral capsids identified high conservancy over the VP2 region. The prediction of epitopes identified several co-localized antigenic peptides from ChPV and TuPV, especially for T-cell epitopes, highlighting the immunological significance of these sites. However, most of these peptides presented host-specific variability, obeying an adaptive scenario. The results of this study show the evolutionary path of ChPV and TuPV, which are influenced by diversifying events such as genomic recombination and selective pressure, as well as by adaptation processes, and their subsequent immunological impact.
Subject(s)
Chickens , Evolution, Molecular , Genome, Viral , Parvoviridae Infections , Phylogeny , Poultry Diseases , Animals , Chickens/virology , Poultry Diseases/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Metagenomics , Parvovirinae/genetics , Parvovirinae/classification , Parvovirus/genetics , Parvovirus/classificationABSTRACT
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
ABSTRACT
RESEARCH HIGHLIGHTS: IDS presented pathognomonic dilatation of the jejunum up to Meckel's diverticulum.IDS caused weight loss, decreased egg production, and increased culling and mortality.Chicken parvovirus (ChPV) was consistently detected through PCR assays.Chicken megrivirus (ChMV) was consistently detected through viral metagenomics.
Subject(s)
Chickens , Parvoviridae Infections , Poultry Diseases , Animals , Poultry Diseases/virology , Poultry Diseases/pathology , Chickens/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Female , Parvovirus/genetics , Parvovirus/isolation & purification , Polymerase Chain Reaction/veterinary , Dilatation, Pathologic/veterinary , Dilatation, Pathologic/virology , Jejunum/virology , Jejunum/pathology , ParvovirinaeABSTRACT
Parvovirus infection affects several animal species, especially young animals. In birds, parvovirus infection has been described in Muscovy ducks, turkeys, and chickens, all of which had enteric diseases characterized by diarrhea. Chicken parvovirus (ChPV) has been detected in poultry around the world in animals affected by enteric problems, showing dwarfism, cloacal pasting, and diarrhea. In Brazil, ChPV was detected in chickens affected by diarrhea fifteen years ago. However, the genetic characteristics of ChPV circulating in chicken flocks were not determined. Therefore, the aim of the present investigation was to determine the genetic characteristics of the VP1 gene from ChPV detected in chickens affected by enteric diseases in Brazil. For this purpose, a molecular approach was used. Specific primers were designed to flank the complete VP1 gene of ChPV and amplify it using PCR. The amplified products from samples of chickens with enteric diseases were sequenced, and 22 complete CDs of the VP1 gene were obtained. These samples, compared to the ABU-P1 sequence, showed 17 sequences with high nucleotide (NT) similarity of 92.7-97.4% and amino acid (AA) similarity of 94.8-99.5% associated with Runting and Stunting syndrome (RSS); there were also five samples associated with hens with diarrhea with unusual jejunal dilatation (JD) that had less similarity than the RSS sequences (NT of 86.5% and AA of 93-93.1%). The phylogenetic analysis determined four groups. Group I had sequences from Korea. The second group included sequences from Korea, China, and Brazil (not included in this work). The third group had studied RSS sequences grouped with the ABU-P1 strain and sequences from China and the United States. Finally, the sequences from JD were clustered in a separate group with a bootstrap of 100%, a group that was denoted as group IV, and included sequences from China. RDP4 and SimPlot analysis showed one point of recombination with the sequences of group III ChPV in the JD sequences. Herein, we show that circulating strains of ChPV exhibit genetic differences in the VP1 gene in Brazilian chicken flocks. Nevertheless, more studies are needed to determine the probability of a new genetic group of ChPV based on the analysis of the complete genome.
ABSTRACT
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Subject(s)
Mardivirus , Marek Disease , Poultry Diseases , Animals , Poultry , Chickens/genetics , Brazil/epidemiology , Phylogeny , Mardivirus/genetics , Marek Disease/epidemiology , Marek Disease/prevention & control , Marek Disease/genetics , Farms , Oncogenes , Poultry Diseases/epidemiology , Poultry Diseases/prevention & controlABSTRACT
The antigenic and molecular characteristics of BR-I infectious bronchitis viruses (IBVs) isolated from Brazil are reported. IBVs isolated from commercial flocks with different clinical manifestations between 2003 and 2019 were submitted to antigenic and molecular characterization. The complete S1 glycoprotein gene of 11 field isolates was amplified and sequenced. The virus neutralization (VN) test showed 94.75% neutralization with a BR-I isolate and 30% or less against other worldwide reference strains. The nucleotide and amino acid sequence analyses revealed 84.3-100% and 83.5-100% identity among them, respectively. The identity values ranged from 57.1 to 82.6% for nucleotides and from 46.6-84.4% for amino acids compared with those of other genotypes. By phylogenetic tree analysis, the Brazilian isolates were branched into the BR-I genotype (lineage GI-11), which was differentiated from foreign reference strains. Selective pressure analyses of BR-I IBVs revealed evolution under purifying selection (negative pressure) for the complete S1 gene but four specific sites (87, 121, 279, and 542) under diversifying selection (positive pressure). Profiles of cleavage sites and potential N-glycosylation sites differed from those of other genotypes. The low molecular relationship among the Brazilian viruses and foreign serotypes was concordant with the VN test results. The low antigenic relatedness (ranging from 5.3-30% between Brazilian genotype BR-I and reference IBV serotypes of North America, Europe, and Asia) indicates that the BR-I genotype is a different serotype, referred to for the first time and hereafter as serotype BR-I. RESEARCH HIGHLIGHTSStrains of the BR-I genotype presented robust antigenic and molecular similarity.BR-I strains evolved under purifying selection mode (negative pressure).The BR-I genotype originated in Brazil and dispersed to other countries.BR-I genotype viruses can be referred to as the BR-I serotype.
Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Serogroup , Brazil/epidemiology , Phylogeny , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genotype , Poultry Diseases/epidemiologyABSTRACT
Salmonella Gallinarum (SG) is the causative agent of fowl typhoid (FT), a disease that is harmful to the poultry industry. Despite sanitation and prophylactic measures, this pathogen is associated with frequent disease outbreaks in developing countries, causing high morbidity and mortality. We characterized the complete genome sequence of Colombian SG strains and then performed a comparative genome analysis with other SG strains found in different regions worldwide. Eight field strains of SG plus a 9R-derived vaccine were subjected to whole-genome sequencing (WGS) and bioinformatics analysis, and the results were used for subsequent molecular typing; virulome, resistome, and mobilome characterization; and a comparative genome study. We identified 26 chromosome-located resistance genes that mostly encode efflux pumps, and point mutations were found in gyrase genes (gyrA and gyrB), with the gyrB mutation S464T frequently found in the Colombian strains. Moreover, we detected 135 virulence genes, mainly in 15 different Salmonella pathogenicity islands (SPIs). We generated an SPI profile for SG, including C63PI, CS54, ssaD, SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-9, SPI-10, SPI-11, SPI-12, SPI-13, and SPI-14. Regarding mobile genetic elements, we found the plasmids Col(pHAD28) and IncFII(S) in most of the strains and 13 different prophage sequences, indicating a frequently obtained profile that included the complete phage Gifsy_2 and incomplete phage sequences resembling Escher_500465_2, Shigel_SfIV, Entero_mEp237, and Salmon_SJ46. This study presents, for the first time, the genomic content of Colombian SG strains and a profile of the genetic elements frequently found in SG, which can be further studied to clarify the pathogenicity and evolutionary characteristics of this serotype.
Subject(s)
Salmonella Infections, Animal , Typhoid Fever , Animals , Colombia/epidemiology , Genetic Profile , Salmonella Infections, Animal/epidemiology , Salmonella/genetics , GenomicsABSTRACT
Salmonella Gallinarum (SG) is a host-restricted enterobacteria and the causative agent of fowl typhoid in poultry. Here, we report the complete genomes of two strains belonging to this serotype. SA68 is a field strain isolated from the livers of dead hen carcasses of a commercial layer farm presenting high mortality located in São Paulo city, Brazil, in 1990. Strain 9R corresponds to a live attenuated SG commercial vaccine. DNA was extracted from pure cultures and subjected to whole genome sequencing (WGS) using the Ion Torrent PGM System. The assemblies reached lengths of 4,657,435 (SA68) and 4,657,471 (9R) base pairs. Complete genomes were deposited in GenBank under the accession numbers CP110192 (SA68) and CP110508 (9R). Both genomes were analyzed and compared in terms of molecular typing, antibiotic resistance genes, virulence genes, Salmonella pathogenic islands (SPIs), insertion sequences and prophages. The data obtained show many similarities in the genetic content, with the exception of the SPI-12 and CS54 pathogenic islands, which are exclusive to the field strain. The information generated will help to understand the virulence differences of field and vaccinal SG strains and can be used to perform evolutionary and epidemiologic studies.
ABSTRACT
Parrot bornavirus (PaBV) is an RNA virus that causes Proventricular Dilatation Disease (PDD), neurological disorders, and death in Psittaciformes. Its diversity in South America is poorly known. We examined a Cacatua galerita presenting neuropathies, PDD, and oculopathies as the main signs. We detected PaBV through reverse transcription polymerase chain reaction (RT-PCR) and partial sequencing of the nucleoprotein (N) and matrix (M) genes. Maximum likelihood and Bayesian phylogenetic inferences classified it as PaBV-2. The nucleotide identity of the sequenced strain ranged from 88.3% to 90.3% against genotype PaBV-2 and from 80.2% to 84.4% against other genotypes. Selective pressure analysis detected signs of episodic diversifying selection in both the N and M genes. No recombination events were detected. Phylodynamic analysis estimated the time to the most recent common ancestor (TMRCA) as the year 1758 for genotype PaBV-2 and the year 1049 for the Orthobornavirus alphapsittaciforme species. Substitution rates were estimated at 2.73 × 10-4 and 4.08 × 10-4 substitutions per year per site for N and M, respectively. The analysis of population dynamics showed a progressive decline in the effective population size during the last century. Timescale phylogeographic analysis revealed a potential South American ancestor as the origin of genotypes 1, 2, and 8. These results contribute to our knowledge of the evolutionary origin, diversity, and dynamics of PaBVs in South America and the world. Additionally, it highlights the importance of further studies in captive Psittaciformes and the potential impact on endangered wild birds.
ABSTRACT
CAstV infections were found in farms and incubators with increased embryo mortality.Brazilian CAstV Biv strains were associated with white chick syndrome.Antigenic peptides were predicted on the surface of the capsid protein.
Subject(s)
Astroviridae Infections , Avastrovirus , Poultry Diseases , Animals , Astroviridae Infections/epidemiology , Astroviridae Infections/veterinary , Avastrovirus/genetics , Brazil/epidemiology , Capsid Proteins/genetics , Chickens , PhylogenyABSTRACT
There are several viral diseases in captive birds. Aves polyomavirus 1 (APyV) and beak and feather disease virus (BFDV) are among the most important in Psittaciformes. The occurrence of these agents has been widely described in various parts of the world; however, little is known about these viruses in South America. APyV and BFDV can cause high morbidity with feather alterations and even mortality. Other variable symptoms could appear depending on the host's age and taxonomic group. The aim of this study was to detect APyV and BFDV in samples of captive exotic and native Psittaciformes in Brazil. Samples from 120 birds with clinical signs compatible with APyV and/or BFDV were examined. In total, 57 (47.5%) positive birds were found, of which 21 (17.5%) had APyV and 41 (34.17%) had BFDV. Five animals (4.17%) presented concurrent infection. Phylogenetic analysis showed a divergent APyV strain and a diversity of Brazilian BFDV strains. Our study shows that these viruses are present at a significant frequency in captive exotic and native Psittaciformes in Brazil. This study also highlights the need for constant epidemiologic surveillance to preserve bird biodiversity with a focus on endangered Psittaciformes species.
Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Polyomavirus , Psittaciformes , Animals , Birds , Brazil/epidemiology , Circovirus/genetics , DNA, Viral , Endangered Species , Phylogeny , Polymerase Chain Reaction , Polyomavirus/geneticsABSTRACT
Avipoxvirus affects chickens and wild birds, and it is characterized by lesions on the nonfeathered parts of the body (the cutaneous form), or necrotic lesions in the upper respiratory tract (the diphtheritic form). In poultry farming, avian pox is usually controlled by live attenuated vaccines. However, there have been many reports of outbreaks, even in flocks of vaccinated birds. In the present study, different outbreaks of the emerging clade E avipoxvirus were detected in commercial breeder flocks of chickens vaccinated against fowlpox virus in Southeast Brazil. Clinical manifestations of these outbreaks included a marked prevalence of moderate to severe progressive lesions in the beaks of affected birds, especially in roosters with increased mortality (up to 8.48%). Also, a reduced hatchability (up to 20.77% fewer hatching eggs) was observed in these flocks. Analysis of clinical samples through light and transmission electron microscopy revealed the presence of Bollinger bodies and poxvirus particles in epithelial cells and affecting chondrocytes. PCR, sequencing, and phylogenetic analysis of major core protein (P4b) and DNA polymerase (pol) genes identified this virus as clade E avipoxvirus. We also developed qPCR assays for open reading frames (ORFs) 49, 114, and 159 to detect and quantify this emergent virus. These results show the arrival and initial spread of this pathogen in the poultry industry, which was associated with harmful outbreaks and exacerbated clinical manifestations in vaccinated commercial breeder flocks. This study also highlights the relevance of permanent vigilance and the need to improve sanitary and vaccination programs.
Subject(s)
Avipoxvirus , Poultry Diseases , Animals , Avipoxvirus/genetics , Beak/pathology , Chickens , Disease Outbreaks/veterinary , Female , Male , Phylogeny , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Sex CharacteristicsABSTRACT
Reticuloendotheliosis virus (REV) is a retroviral pathogen capable of infecting several avian hosts and is associated with immunosuppression, anemia, proventriculitis, neoplasia, and runting-stunting syndrome. Its genome contains the three major genes, gag, pol, and env, and two flanking long terminal repeat (LTR) regions. Complete genome sequences of REV are limited in terms of geographical origin. The aim of this study was to characterize the complete genome of REV detected in Brazilian chickens with multiple viral coinfections and analyze the polymorphisms in the deduced amino acids sequences corresponding to its encoded proteins. We tested the presence and completeness of REV as well as other viral pathogens in samples from Brazilian poultry farms by qPCR. The complete genomes of two REV strains were sequenced by overlapping fragments through the dideoxy method. Phylogenetic analysis, pairwise identity matrix, polymorphism identification and protein modeling were performed along the entire genome. We detected REV in 65% (26/40) of the tested samples. Concomitant viral infections were detected in 82.5% (33/40) of the samples and in 90% (9/10) of the farms. Multiple infections included up to seven viruses. Phylogenetic analysis classified both Brazilian strains into REV subtype 3, and the pairwise comparison indicated that strains from the USA and fowlpox virus (FWPV)-related strains were the most identical. The subdomain p18 in gag, the reverse transcriptase/ribonuclease H in pol, and the surface (SU) in the env protein were the most polymorphic in genomic comparisons. The relevant motifs for each protein were highly conserved, with fewer polymorphisms in the fusion peptide, immunosuppression domain, and disulfide bonds on the surface (SU) and transmembrane (TM) of env. This is the first study to include complete genomes of REV in Brazil and South America detected in farms with multiple viral coinfections. Our findings suggest an involvement of REV as an immunosuppressor and active agent in the emergence and progression of multiple infectious diseases. We also found a possible etiological relationship between Brazilian strains and the USA and FWPV recombinant strains. This information highlights the need for epidemiological vigilance regarding REV in association with another pathogens.
Subject(s)
Coinfection , Fowlpox virus , Poultry Diseases , Reticuloendotheliosis virus , Animals , Brazil/epidemiology , Chickens/genetics , Coinfection/genetics , Coinfection/veterinary , Fowlpox virus/genetics , Genome, Viral , Phylogeny , Reticuloendotheliosis virus/geneticsABSTRACT
Chicken parvovirus (ChPV) is an agent frequently associated with runting stunting syndrome (RSS). This syndrome has been reported in association with ChPV in many countries, including Brazil; however, studies characterizing the virus on a molecular level are scarce, and ChPV pathogenicity in day-old chicks remains unclear. The aim of the present work was to establish the molecular characteristics of ChPV, determine the pathogenicity of ChPV in SPF chicks and detect and quantify ChPV by qPCR in several tissues and chicks of different ages. The experimental challenge was performed at one day of age, and daily and weekly observations were performed and five birds from each experimental group (mock and infected birds) were euthanized to perform the different analysis. ChPV genome copies were detected and quantified by qPCR in gut, spleen, thymus, kidney, pancreas, proventriculus and bursa. Clinically, the infected group presented with diarrhea 24 h post-infection, which persisted until 42 days of age. The small intestine was distended, and its contents were aqueous and foamy. Enteritis and dilated crypts with cyst shapes were observed in intestinal segments. Acute pancreatitis associated with lymphocytic nodules, infiltrating lymphocytes and plasma cells between the pancreatic acinus was observed. Koch's postulate was demonstrated and the genetic characterization of the VP1 gene showed that the Brazilian ChPV isolate belongs to the ChPV II group.
ABSTRACT
White chick syndrome (WCS) is an emergent disease that affects hatchability and hatched chicks, resulting in high mortality and economic losses, and is related to chicken astrovirus (CAstV). This syndrome has been reported in several countries worldwide, and groups A iii and B vi of CAstV have been determined; however, in Brazil, the virus has not been genotyped. The innate immunity of chicks affected by WCS or any CAstV is poorly understood and studied, and it is important to determine whether relative cytokine expression occurs during the early stages of the life of chicks. The aim of the present investigation is to detect and molecularly characterize CAstV associated with WCS, examine the macroscopic and microscopic lesions in the jejunum and spleen, and determine cytokine expression in the jejunum, liver, spleen and thymus of chicks naturally infected with WCS. To do so, we applied a pathological and molecular approach for CAstV detection and characterization, as well as the quantification of the relative mRNA expression of several cytokine genes. The phylogenetic analyses of the sequences obtained herein classified CAstV as uniquely belonging to group B iv, showing a high similarity of nucleotides (NT) (75.7-80.6%) and amino acids (AA) (84.2-89.9%) with the members of group B and a low similarity of NT (46.7-47.9%) and AA (37.8-38.9%) with the virus belonging in group A. CAstV was also detected and quantified in the serum, spleen, thymus and jejunum, the latter being the organ where CAstV had the highest viral concentration. However, this organ did not present any microscopical alterations. In contrast, we observed necrotic hepatitis in the liver of the affected subjects. On the other hand, we observed the activation of several T helper 1 (Th1)- and T helper 2 (Th2)-cytokines (IFN-γ, IL-2, IL-8, IL-12p40, IL-15, TGF-ß4, TNF-SF-15 and t-BET), without being able to control the viral replication due to the high concentration of viral particles in some organs, principally in the gut. One possible role of these cytokines is contributing to the control of inflammation and cell protection of intestinal cells, principally during the early activation of immune responses. However, the fact that these responses are not mature enough to control the viral infection means that more studies need to be carried out to elucidate this topic.
ABSTRACT
Fowlpox (FP) is a common epitheliotropic disease in chickens that is usually controlled by live attenuated vaccines. However, there have been some reports of outbreaks of FP in recent years, even in vaccinated flocks, presenting as atypical lesions and feathering abnormalities in chickens. These findings can be associated with fowlpox virus (FPV) with the reticuloendotheliosis virus (REV) integrated into its genome. In the present study, outbreaks of atypical FP were explored in vaccinated commercial laying hen flocks to determine the nature of the causative agent by histopathologic and molecular approaches. FPV and REV were detected and classified into subclade A1 of the genus Avipoxvirus and subtype 3 of REV (REV3), respectively. Additionally, heterogeneous populations of FPV with partial (containing only a remnant long terminal repeat-LTR) or total (all functional genes) integration of REV were identified by heterologous PCRs and detected considering reference integration sites. These results indicate the mechanism of chimeric genome FPV-REV associated with outbreaks and atypical clinicopathological manifestations in commercial laying hens for the first time in Brazil and in South America. In addition, this study demonstrates the emergence of REV integrated in the FPV genome in Brazilian chicken flocks.
Subject(s)
Chickens , Fowlpox virus/physiology , Fowlpox/pathology , Poultry Diseases/pathology , Reticuloendotheliosis Viruses, Avian/physiology , Reticuloendotheliosis, Avian/pathology , Animals , Brazil , Female , Fowlpox/virology , Poultry Diseases/virology , Reticuloendotheliosis, Avian/virologyABSTRACT
Marek's disease virus (MDV) and the reticuloendotheliosis virus (REV) are two of the primary oncogenic viruses that significantly affect chickens. In Brazil, there have been no previous published reports on the presence of field REV alone or in coinfection. This retrospective study analyzes samples from a case of lymphoproliferative lesions from a backyard chicken flock. MDV and REV were detected by PCR and classified as MDV1 and REV3, respectively, through sequencing and phylogenetic analysis based on the glycoprotein B (gB) genes for MDV and the polymerase (pol) and envelope (env) genes for REV. Real-time PCR reactions were performed for MDV to rule out the presence of the Rispens vaccine strain. This is the first report of the presence of REV in coinfection with a MDV clinical case in Brazil and the first molecular characterization of REV in South America. This study highlights the importance of molecular diagnosis for REV and MDV in poultry. In addition, this study highlights the distribution of these two viruses worldwide and the latent risk of them solely or in coinfection to this part of the world.
ABSTRACT
Infectious bronchitis (IB) is one of the avian diseases with the greatest impact on poultry farming worldwide. In Brazil, strain BR-I (GI-11) is the most prevalent in poultry flocks. The present study aimed to develop a seminested RT-PCR assay specific for the diagnosis of BR-I IBV in Brazilian samples, targeting subunit 1 of the S gene. The detection limit of this assay was 10 copies of the IBV genome. In this study, 62.24% of 572 organ pools from the 5 regions of Brazil tested positive in a 3'UTR screening, and 84.83% were typed as BR-I IBV. BR-I was detected in the respiratory, digestive and urogenital tracts in pooled samples from all Brazilian geographical regions and in all the breeding systems analyzed. Specificity and sensitivity tests as well as phylogenetic analysis successfully confirmed the expected clustering of the sequences detected by this assay with the BR-I (GI-11) group. The nested PCR described in this study represents a suitable and valuable tool in the diagnosis, epidemiology, monitoring and vaccination decisions of IBV.
Subject(s)
Coronavirus Infections/veterinary , Genotyping Techniques/veterinary , Infectious bronchitis virus/classification , Poultry Diseases/virology , Spike Glycoprotein, Coronavirus/genetics , 3' Untranslated Regions , Animals , Brazil , Breeding , Coronavirus Infections/diagnosis , Infectious bronchitis virus/genetics , Infectious bronchitis virus/isolation & purification , Limit of Detection , Phylogeny , Poultry , Reverse Transcriptase Polymerase Chain Reaction/veterinaryABSTRACT
Avian bornaviruses (ABVs) are the causative agents of proventricular dilatation disease (PDD), a fatal neurologic disease considered to be a major threat to psittacine bird populations. We performed a reverse transcription PCR survey to detect the presence of canary avian bornavirus (CnBV) in birds of order Passeriformes related to different clinical manifestations, such as sudden death, neurologic signs, apathy, anorexia, excessive beak growth, and PDD. A total of 227 samples from captive and wild canaries were included, of which 80 samples were captive birds, comprising saffron finches (n = 71) and common canary (n = 9), and 147 samples were wild birds distributed among a variety of several species. Two samples from captive birds (2/80) were positive for ABV, and in wild birds, only one sample was positive for ABV. The positive samples were subjected to DNA sequencing, and only the CnBV-1 serotype was found, which was the first time it was detected outside of Germany (Austria/Hungary), where it was first detected in 2009. Phylogenetic analysis confirmed that avian bornavirus serotype CnBV-1 is present in order Passeriformes in Brazil.
Detección de bornavirus aviar en aves paseriformes silvestres y en cautiverio en Brasil. Los bornavirus aviares (ABV, por sus siglas en inglés) son los agentes causantes de la enfermedad de la dilatación proventricular (PDD), una enfermedad neurológica mortal considerada como una de las principales amenazas para las poblaciones de aves psitácidas. Se realizó un muestreo por transcrpción reversa y PCR para detectar la presencia de bornavirus de los canarios (CnBV) en aves de orden Passeriformes relacionadas con diferentes manifestaciones clínicas, como muerte súbita, signos neurológicos, apatía, anorexia, crecimiento excesivo del pico y enfermedad de dilatación proventricular. Se incluyeron un total de 227 muestras de canarios en cautividad y silvestres, de las cuales 80 muestras fueron de aves en cautiverio, incluyendo jilgueros dorados (n =71) y canarios comunes (n = 9) y 147 muestras fueron aves silvestres distribuidas entre una variedad de especies. Dos muestras de aves cautivas (2/80) fueron positivas para bornavirus aviar; en aves silvestres, solo una muestra fue positiva para bornavirus aviar. Las muestras positivas se sometieron a secuenciación de ADN y solo se encontró el bornavirus de canarios serotipo 1, que es la primera vez que se detecta fuera de Alemania (Austria/Hungría), donde se detectó por primera vez en el año 2009. El análisis filogenético confirmó que el bornavirus de canarios serotipo 1 está presente en el orden Passeriformes en Brasil.