Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38428420

ABSTRACT

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Subject(s)
Golgi Apparatus , Membrane Proteins , Animals , Humans , Membrane Proteins/metabolism , Golgi Apparatus/metabolism , Cytoskeleton/metabolism , HeLa Cells , Vertebrates
2.
Trends Biochem Sci ; 45(8): 706-717, 2020 08.
Article in English | MEDLINE | ID: mdl-32417131

ABSTRACT

The formation of immiscible liquid phases or coacervates is a phenomenon widely observed in biology. Marine organisms, for instance, use liquid-liquid phase separation (LLPS) as the precursor phase to form various fibrillar or crustaceous materials that are essential for surface adhesion. More recently, the importance of LLPS has been realized in the compartmentalization of living cells and in obtaining ordered but dynamic partitions that can be reversed according to necessity. Here, we compare the properties, features, and peculiarities of intracellular and extracellular coacervates, drawing parallels and learning from the differences. A more general view of the phenomenon may in the future inform new studies to allow a better comprehension of its laws.


Subject(s)
Colloids/chemistry , Solutions/chemistry , Animals , Bivalvia , Cell Compartmentation , Origin of Life , Polychaeta
SELECTION OF CITATIONS
SEARCH DETAIL
...