Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498916

ABSTRACT

26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3) were recently identified as prognostic biomarkers and potential therapeutic targets in chronic myeloid leukemia (CML) and multiple solid tumors. In the present study, we analyzed the expression of 19S proteasome subunits in acute myeloid leukemia (AML) patients with mutations in the FMS-like tyrosine kinase 3 (FLT3) gene and assessed their impact on overall survival (OS). High levels of PSMD3 but not PSMD1 expression correlated with a worse OS in FLT3-mutated AML. Consistent with an oncogenic role for PSMD3 in AML, shRNA-mediated PSMD3 knockdown impaired colony formation of FLT3+ AML cell lines, which correlated with increased OS in xenograft models. While PSMD3 regulated nuclear factor-kappa B (NF-κB) transcriptional activity in CML, we did not observe similar effects in FLT3+ AML cells. Rather, proteomics analyses suggested a role for PSMD3 in neutrophil degranulation and energy metabolism. Finally, we identified additional PSMD subunits that are upregulated in AML patients with mutated versus wild-type FLT3, which correlated with worse outcomes. These findings suggest that different components of the 19S regulatory complex of the 26S proteasome can have indications for OS and may serve as prognostic biomarkers in AML and other types of cancers.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , Proteasome Endopeptidase Complex/genetics , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , Oncogenes
2.
Clin Transl Med ; 12(12): e1146, 2022 12.
Article in English | MEDLINE | ID: mdl-36536477

ABSTRACT

Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.


Subject(s)
Cell Cycle Proteins , Drug Resistance, Neoplasm , Glycerophospholipids , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Animals , Mice , Disease Progression , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Genes, Switch , Glycerophospholipids/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/therapeutic use , Humans , Cell Cycle Proteins/genetics
3.
World J Gastroenterol ; 23(36): 6628-6638, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-29085208

ABSTRACT

Inflammatory bowel diseases (IBDs), such as ulcerative colitis and Crohn's disease, are chronic pathologies associated with a deregulated immune response in the intestinal mucosa, and they are triggered by environmental factors in genetically susceptible individuals. Exogenous glucocorticoids (GCs) are widely used as anti-inflammatory therapy in IBDs. In the past, patients with moderate or severe states of inflammation received GCs as a first line therapy with an important effectiveness in terms of reduction of the disease activity and the induction of remission. However, this treatment often results in detrimental side effects. This downside drove the development of second generation GCs and more precise (non-systemic) drug-delivery methods. Recent clinical trials show that most of these new treatments have similar effectiveness to first generation GCs with fewer adverse effects. The remaining challenge in successful treatment of IBDs concerns the refractoriness and dependency that some patients encounter during GCs treatment. A deeper understanding of the molecular mechanisms underlying GC response is key to personalizing drug choice for IBDs patients to optimize their response to treatment. In this review, we examine the clinical characteristics of treatment with GCs, followed by an in depth analysis of the proposed molecular mechanisms involved in its resistance and dependence associated with IBDs. This thorough analysis of current clinical and biomedical literature may help guide physicians in determining a course of treatment for IBDs patients and identifies important areas needing further study.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Glucocorticoids/therapeutic use , Immunosuppressive Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/epidemiology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Crohn Disease/epidemiology , Crohn Disease/genetics , Crohn Disease/immunology , Drug Delivery Systems/methods , Drug Resistance/genetics , Epigenesis, Genetic , Glucocorticoids/pharmacology , Humans , Immune System/drug effects , Immunosuppressive Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/physiopathology , Prevalence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...