Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurogastroenterol Motil ; 24(12): e611-21, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23106847

ABSTRACT

BACKGROUND: Noninvasive methods are needed to improve the diagnosis of enteric neuropathies. Full-field optical coherence microscopy (FFOCM) is a novel optical microscopy modality that can acquire 1 µm resolution images of tissue. The objective of this research was to demonstrate FFOCM imaging for the characterization of the enteric nervous system (ENS). METHODS: Normal mice and EdnrB(-/-) mice, a model of Hirschsprung's disease (HD), were imaged in three-dimensions ex vivo using FFOCM through the entire thickness and length of the gut. Quantitative analysis of myenteric ganglia was performed on FFOCM images obtained from whole-mount tissues and compared with immunohistochemistry imaged by confocal microscopy. KEY RESULTS: Full-field optical coherence microscopy enabled visualization of the full thickness gut wall from serosa to mucosa. Images of the myenteric plexus were successfully acquired from the stomach, duodenum, colon, and rectum. Quantification of ganglionic neuronal counts on FFOCM images revealed strong interobserver agreement and identical values to those obtained by immunofluorescence microscopy. In EdnrB(-/-) mice, FFOCM analysis revealed a significant decrease in ganglia density along the colorectum and a significantly lower density of ganglia in all colorectal segments compared with normal mice. CONCLUSIONS & INFERENCES: Full-field optical coherence microscopy enables optical microscopic imaging of the ENS within the bowel wall along the entire intestine. FFOCM is able to differentiate ganglionic from aganglionic colon in a mouse model of HD, and can provide quantitative assessment of ganglionic density. With further refinements that enable bowel wall imaging in vivo, this technology has the potential to revolutionize the characterization of the ENS and the diagnosis of enteric neuropathies.


Subject(s)
Enteric Nervous System , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Myenteric Plexus , Tomography, Optical Coherence/methods , Animals , Disease Models, Animal , Female , Ganglia, Autonomic , Hirschsprung Disease/pathology , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Young Adult
2.
Opt Lett ; 30(24): 3353-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16389829

ABSTRACT

We demonstrate an optically sectioned fluorescence lifetime imaging microscope with a wide-field detector, using a convenient, continuously tunable (435-1150 nm) ultrafast source for fluorescence imaging applications that is derived from a visible supercontinuum generated in a microstructured fiber.

SELECTION OF CITATIONS
SEARCH DETAIL