ABSTRACT
The combination of signals from the T-cell receptor (TCR) and co-stimulatory molecules triggers transcriptional programs that lead to proliferation, cytokine secretion, and effector functions. We compared the impact of engaging the TCR with CD28 and/or CD43 at different time points relative to TCR engagement on T-cell function. TCR and CD43 simultaneous engagement resulted in higher CD69 and PD-1 expression levels than in TCR and CD28-stimulated cells, with a cytokine signature of mostly effector, inflammatory, and regulatory cytokines, while TCR and CD28-activated cells secreted all categories of cytokines, including stimulatory cytokines. Furthermore, the timing of CD43 engagement relative to TCR ligation, and to a lesser degree that of CD28, resulted in distinct patterns of expression of cytokines, chemokines, and growth factors. Complete cell activation was observed when CD28 or CD43 were engaged simultaneously with or before the TCR, but ligating the TCR before CD43 or CD28 failed to complete a cell activation program regarding cytokine secretion. As the order in which CD43 or CD28 and the TCR were engaged resulted in different combinations of cytokines that shape distinct T-cell immune programs, we analyzed their upstream sequences to assess whether the combinations of cytokines were associated with different sets of regulatory elements. We found that the order in which the TCR and CD28 or CD43 are engaged predicts the recruitment of specific sets of chromatin remodelers and TFSS, which ultimately regulate T-cell polarization and plasticity. Our data underscore that the combination of co-stimulatory molecules and the time when they are engaged relative to the TCR can change the cell differentiation program.
Subject(s)
CD28 Antigens , Receptors, Antigen, T-Cell , CD28 Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Lymphocyte Activation , Cell Differentiation , Cytokines/metabolismABSTRACT
Inflammatory and antimicrobial diseases constitute a major burden for society, and fighting them is a WHO strategic priority. Most of the treatments available to fight inflammatory diseases are anti-inflammatory drugs, such as corticosteroids or immunomodulators that lack cellular specificity and lead to numerous side effects. In addition to suppressing undesired inflammation and reducing disease progression, these drugs lessen the immune system protective functions. Furthermore, treating infectious diseases is more and more challenging due to the rise of microbial resistance to antimicrobial drugs. Thus, controlling the inflammatory process locally without compromising the ability to combat infections is an essential feature in the treatment of inflammatory diseases. We isolated three forms (DRS-DA2N, DRS-DA2NE, and DRS-DA2NEQ) of the same peptide, DRS-DA2, which belongs to the dermaseptin family, from the Mexican tree frog Pachymedusa dacnicolor. Interestingly, DRS-DA2N and DRS-DA2NEQ exhibit a dual activity by inducing the death of leukocytes as well as that of Gram-negative and Gram-positive bacteria, including multiresistant strains, without affecting other cells such as epithelial cells or erythrocytes. We showed that the death of both immune cells and bacteria is induced rapidly by DRS-DA2 and that the membrane is permeabilized, leading to the loss of membrane integrity. We also validated the capacity of DRS-DA2 to regulate the pool of inflammatory cells in vivo in a mouse model of noninfectious peritonitis. After the induction of peritonitis, a local injection of DRS-DA2N could decrease the number of inflammatory cells locally in the peritoneal cavity without inducing a systemic effect, as no changes in the number of inflammatory cells could be detected in blood or in the bone marrow. Collectively, these data suggest that this peptide could be a promising tool in the treatment of inflammatory diseases, such as inflammatory skin diseases, as it could reduce the number of inflammatory cells locally without suppressing the ability to combat infections.
ABSTRACT
Aberrant expression of CD43 in malignant tumors of nonhematopoietic origin such as those from lung, cervix, colon, and breast has been shown to correlate with poor prognosis, providing tumor cells with enhanced motility, anchorage-independent growth, and in vivo tumor size, while protecting the cells of NK lysis and apoptosis. To further characterize the role of CD43 in cell transformation, we tested whether interfering its expression modified the capacity of the A549 non-small cell lung cancer cells to secrete molecules contributing to malignancy. The proteomic analysis of the secretome of serum-starved A549 cells revealed that cells expressing normal levels of CD43 released significantly high levels of molecules involved in extracellular matrix organization, angiogenesis, platelet degranulation, collagen degradation, and inflammation, as compared to CD43 RNAi cells. This data reveals a novel and unexpected role for CD43 in lung cancer development, mainly in remodeling the tumor microenvironment.
Subject(s)
Extracellular Matrix/metabolism , Leukosialin/metabolism , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , A549 Cells , Gene Silencing , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Tumor MicroenvironmentABSTRACT
An important step of innate immune response is the recruitment of polymorphonuclear leukocytes (PMN) to injured tissues through chemotactic molecules. Galectins, a family of endogenous lectins, participate in numerous functions such as lymphoid cell migration, homing, cell-cell and cell-matrix interactions. Particularly, galectin-3 (Gal-3) and -9 have been implicated in the modulation of acute and chronic inflammation by inducing the directional migration of monocytes/macrophages and eosinophils, whereas Gal-1 is considered to function as an anti-inflammatory molecule, capable of inhibiting the influx of PMN to the site of injury. In this study, we assessed the effect of Gal-1 on neutrophil recruitment, in the absence of additional inflammatory insults. Contrasting with its capacity to inhibit cell trafficking and modulate the release of mediators described in models of acute inflammation and autoimmunity, we evidenced that Gal-1 has the capacity to induce neutrophil migration both in vitro and in vivo. This effect is not mediated through a G-protein-coupled receptor but potentially through the sialoglycoprotein CD43, via carbohydrate binding and through the p38 mitogen-activated protein kinase pathway. These results suggest a novel biological function for CD43 on neutrophils and highlight that depending on the environment, Gal-1 can act either as chemoattractant or, as a molecule that negatively regulates migration under acute inflammatory conditions, underscoring the potential of Gal-1 as a target for innovative drug development.
Subject(s)
Chemotaxis, Leukocyte , Galectin 1/metabolism , Neutrophils/physiology , Galectin 1/pharmacology , Humans , Immunity, Innate , In Vitro Techniques , Leukosialin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
Antimicrobial peptides participate in innate host defense by directly eliminating pathogens as a result of their ability to damage the microbial membrane and by providing danger signals that will recruit innate immune cells to the site of infection. Dermaseptin DA4 (DRS-DA4), a new antimicrobial peptide of the dermaseptin superfamily, was identified based on its chemotactic properties, contrasting with the currently used microbicidal properties assessment. The peptide was isolated and purified by size exclusion HPLC and RP-HPLC from the skin of the Mexican frog, Pachymedusa dacnicolor. MS and amino acid sequence analyses were consistent with the structure GMWSKIKNAGKAAKAAAKAAGKAALGAVSEAM. CD experiments showed that, unlike most antimicrobial peptides of the dermaseptin superfamily, DRS-DA4 is not structured in the presence of zwitterionic lipids. DRS-DA4 is a potent chemoattractant for human leukocytes and is devoid of hemolytic activity; in addition, bactericidal tests and membrane perturbation assays on model membranes and on Escherichia coli and Staphylococcus aureus strains have shown that the antibacterial effects of DRS-DA4 and permeabilization of the inner membrane are exclusively selective for Gram-negative bacteria. Interestingly, despite high sequence homology with dermaseptin S4, dermaseptin B2 was not able to induce directional migration of leukocytes, and displayed a broader bactericidal spectrum. A detailed structure-function analysis of closely related peptides with different capabilities, such as DRS-DA4 and dermaseptin B2, is critical for the design of new molecules with specific attributes to modulate immunity and/or act as microbicidal agents.