Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Environ Res ; 246: 118027, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38159670

ABSTRACT

The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.


Subject(s)
Alum Compounds , Gases , Sewage , Gases/chemistry , Palm Oil , Temperature , Biomass
3.
Polymers (Basel) ; 14(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35746079

ABSTRACT

The discharge of textile wastewater into aquatic streams is considered a major challenge due to its effect on the water ecosystem. Direct blue 78 (DB78) dye has a complex structure. Therefore, it is difficult to separate it from industrial wastewater. In this study, carbon obtained from the pyrolysis of mixed palm seeds under different temperatures (400 °C and 1000 °C) was activated by a thermochemical method by using microwave radiation and an HCl solution in order to improve its adsorption characteristics. The generated activated carbon was used to synthesize a novel activated carbon/chitosan microbead (ACMB) for dye removal from textile wastewater. The obtained activated carbon (AC) was characterized by a physicochemical analysis that included, namely, particle size, zeta potential, SEM, EDX, and FTIR analyses. A series of batch experiments were conducted in terms of the ACMB dose, contact time, pH, and activated carbon/chitosan ratios in synthetic microbeads for enhancing the adsorption capacity. A remarkable improvement in the surface roughness was observed using SEM analysis. The particle surface was transformed from a slick surface with a minor-pore structure to a rough surface with major-pore structure. The zeta potential analysis indicated a higher improvement in the carbon surface charge, from -35 mv (before activation) to +20 mv (after activation). The adsorption tests showed that the dye-removal efficiency increased with the increasing adsorbent concentration. The maximum removal efficiencies were 97.8% and 98.4% using 3 and 4 g/L of AC400°C MB-0.3:1 and AC1000°C MB-0.3:1, respectively, with initial dye concentrations of 40 mg/L under acidic conditions (pH = 4-5), and an optimal mixing time of 50 min. The equilibrium studies for AC400°C MB-0.3:1 and AC1000°C MB-0.3:1 showed that the equilibrium data best fitted to the Langmuir isothermal model with R2 = 0.99. These results reveal that activated carbon/chitosan microbeads are an effective adsorbent for the removal of direct blue 78 dye and provide a new platform for dye removal.

4.
Chemosphere ; 287(Pt 1): 132052, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34478965

ABSTRACT

The thermochemical processes such as gasification and co-gasification of biomass and coal are promising route for producing hydrogen-rich syngas. However, the process is characterized with complex reactions that pose a tremendous challenge in terms of controlling the process variables. This challenge can be overcome using appropriate machine learning algorithm to model the nonlinear complex relationship between the predictors and the targeted response. Hence, this study aimed to employ various machine learning algorithms such as regression models, support vector machine regression (SVM), gaussian processing regression (GPR), and artificial neural networks (ANN) for modeling hydrogen-rich syngas production by gasification and co-gasification of biomass and coal. A total of 12 machine learning algorithms which comprises the regression models, SVM, GPR, and ANN were configured, trained using 124 datasets. The performances of the algorithms were evaluated using the coefficient of determination (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE). In all cases, the ANN algorithms offer superior performances and displayed robust predictions of the hydrogen-rich syngas from the co-gasification processes. The R2 of both the Levenberg-Marquardt- and Bayesian Regularization-trained ANN obtained from the prediction of the hydrogen-rich syngas was found to be within 0.857-0.998 with low prediction errors. The sensitivity analysis to determine the effect of the process parameters on the model output revealed that all the parameters showed a varying level of influence. In most of the processes, the gasification temperature was found to have the most significant influence on the model output.


Subject(s)
Coal , Hydrogen , Bayes Theorem , Biomass , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL