Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 272: 129131, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33592516

ABSTRACT

Trace elements are potentially critical contaminants of aquatic environments and fish, occupying upper trophic levels, are especially vulnerable to bioaccumulation. Due to public health concerns, however, data on the elemental composition of non-commercially important marine species are particularly lacking. Ocean sunfish (Mola spp.) attain a low commercial value worldwide and information on their elemental composition is limited. In this context, we examined the concentration of 11 trace elements (V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb) in eight tissues [brain, gills, gelatin (subcutaneous white gelatinous layer), gonads, spleen, liver, white muscle and red muscle] of 20 juvenile specimens (37.5-85.5 cm TL). Gender-related differences were solely found in the gonads and chiefly for essential elements possibly as a result of their importance in embryo development. Overall, Zn and As were the elements observed in greatest concentrations in body tissues. The considerably high presence of As should be related to the dietary preferences of juvenile ocean sunfish. Considerable inter-individual variability in the concentration of each element in any given tissue was observed, especially in the liver, likely originating from the inclusion of both benthic and pelagic prey in the diet of analysed fish. Greatest elemental loads were found in the liver and gills whereas lowest loads were observed in white muscle, brain and gelatin. Moreover, a clear distinction in elemental load and elemental composition was observed between white and red muscles, likely deriving from existing divergent metabolism-related physiological adaptations linked to their different roles in locomotion.


Subject(s)
Tetraodontiformes , Trace Elements , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Gonads , Oceans and Seas , Trace Elements/analysis , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 266: 128973, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33250233

ABSTRACT

Halimione portulacoides plants were exposed to dissolved cerium (Ce) in a hydroponic medium for five days. Ce accumulation in plants followed the metal's increase in the medium although with a very low translocation factor (TF < 0.01) between roots and shoots. Ce median concentrations in roots were 586, 988 and 1103 µg/g (dry wt.), while in shoots the median values reached 1.9, 3.5 and 10.0 µg/g (dry wt.), for plants exposed to 300, 600 and 1200 µg/L of Ce, respectively. No significant differences occurred in the length of roots and shoots among treatment groups, albeit plants exposed to the highest Ce concentration showed a clear loss of turgor pressure on the fifth day. An increase of hydrogen peroxide and malondialdehyde levels were observed in the plant shoots at 1200 µg/L of Ce. The highest concentration also triggered an answer by the shoots' antioxidant enzymes with a decrease in the activity of superoxide dismutase and an increase in peroxidase. However, no significant change in catalase activity was observed, compared to the control group, which may indicate that peroxidase played a more crucial role against the oxidative stress than catalase. Combined results indicate that H. portulacoides was actively responding to a toxic effect imposed by this higher Ce concentration. Nevertheless, changes in normal environmental conditions, may increase the bioavailability of Ce, while in areas where acid mine drainage may occur, the highest Ce concentration tested in this study may be largely exceeded, placing the sustainability of halophytes and estuarine marshes at risk.


Subject(s)
Cerium , Chenopodiaceae , Cerium/toxicity , Plant Roots , Salt-Tolerant Plants , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...