Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Front Nutr ; 11: 1444483, 2024.
Article in English | MEDLINE | ID: mdl-39234289

ABSTRACT

Background: Schizophrenia, schizoaffective disorder, and bipolar affective disorder are debilitating psychiatric conditions characterized by a chronic pattern of emotional, behavioral, and cognitive disturbances. Shared psychopathology includes the pre-eminence of altered affective states, disorders of thoughts, and behavioral control. Additionally, those conditions share epidemiological traits, including significant cardiovascular, metabolic, infectious, and respiratory co-morbidities, resulting in reduced life expectancy of up to 25 years. Nutritional ketosis has been successfully used to treat a range of neurological disorders and preclinical data have convincingly shown potential for its use in animal models of psychotic disorders. More recent data from open clinical trials have pointed toward a dramatic reduction in psychotic, affective, and metabolic symptoms in both schizophrenia and bipolar affective disorder. Objectives: to investigate the effects of nutritional ketosis via a modified ketogenic diet (MKD) over 14 weeks in stable community patients with bipolar disorder, schizoaffective disorder, or schizophrenia. Design: A randomized placebo-controlled clinical trial of 100 non-hospitalized adult participants with a diagnosis of bipolar disorder, schizoaffective disorder, or schizophrenia who are capable of consenting and willing to change their diets. Intervention: Dietitian-led and medically supervised ketogenic diet compared to a diet following the Australian Guide to Healthy Eating for 14 weeks. Outcomes: The primary outcomes include psychiatric and cognitive measures, reported as symptom improvement and functional changes in the Positive and Negative Symptoms Scale (PANSS), Young Mania Rating Scale (YMS), Beck Depression Inventory (BDI), WHO Disability Schedule, Affect Lability Scale and the Cambridge Cognitive Battery. The secondary metabolic outcomes include changes in body weight, blood pressure, liver and kidney function tests, lipid profiles, and markers of insulin resistance. Ketone and glucose levels will be used to study the correlation between primary and secondary outcomes. Optional hair cortisol analysis will assess long-term stress and variations in fecal microbiome composition. Autonomic nervous system activity will be measured via wearable devices (OURA ring and EMBRACE wristband) in the form of skin conductance, oximetry, continuous pulse monitoring, respiratory rate, movement tracking, and sleep quality. Based on the encouraging results from established preclinical research, clinical data from other neurodevelopment disorders, and open trials in bipolar disorder and schizophrenia, we predict that the ketogenic metabolic therapy will be well tolerated and result in improved psychiatric and metabolic outcomes as well as global measures of social and community functioning. We additionally predict that a correlation may exist between the level of ketosis achieved and the metabolic, cognitive, and psychiatric outcomes in the intervention group.

2.
IEEE Trans Biomed Circuits Syst ; 18(1): 186-199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37725735

ABSTRACT

Biologically plausible learning with neuronal dendrites is a promising perspective to improve the spike-driven learning capability by introducing dendritic processing as an additional hyperparameter. Neuromorphic computing is an effective and essential solution towards spike-based machine intelligence and neural learning systems. However, on-line learning capability for neuromorphic models is still an open challenge. In this study a novel neuromorphic architecture with dendritic on-line learning (NADOL) is presented, which is a novel efficient methodology for brain-inspired intelligence on embedded hardware. With the feature of distributed processing using spiking neural network, NADOL can cut down the power consumption and enhance the learning efficiency and convergence speed. A detailed analysis for NADOL is presented, which demonstrates the effects of different conditions on learning capabilities, including neuron number in hidden layer, dendritic segregation parameters, feedback connection, and connection sparseness with various levels of amplification. Piecewise linear approximation approach is used to cut down the computational resource cost. The experimental results demonstrate a remarkable learning capability that surpasses other solutions, with NADOL exhibiting superior performance over the GPU platform in dendritic learning. This study's applicability extends across diverse domains, including the Internet of Things, robotic control, and brain-machine interfaces. Moreover, it signifies a pivotal step in bridging the gap between artificial intelligence and neuroscience through the introduction of an innovative neuromorphic paradigm.


Subject(s)
Artificial Intelligence , Education, Distance , Neural Networks, Computer , Computers , Dendrites
3.
IEEE Trans Biomed Circuits Syst ; 16(4): 609-625, 2022 08.
Article in English | MEDLINE | ID: mdl-35737626

ABSTRACT

During the past two decades, epileptic seizure detection and prediction algorithms have evolved rapidly. However, despite significant performance improvements, their hardware implementation using conventional technologies, such as Complementary Metal-Oxide-Semiconductor (CMOS), in power and area-constrained settings remains a challenging task; especially when many recording channels are used. In this paper, we propose a novel low-latency parallel Convolutional Neural Network (CNN) architecture that has between 2-2,800x fewer network parameters compared to State-Of-The-Art (SOTA) CNN architectures and achieves 5-fold cross validation accuracy of 99.84% for epileptic seizure detection, and 99.01% and 97.54% for epileptic seizure prediction, when evaluated using the University of Bonn Electroencephalogram (EEG), CHB-MIT and SWEC-ETHZ seizure datasets, respectively. We subsequently implement our network onto analog crossbar arrays comprising Resistive Random-Access Memory (RRAM) devices, and provide a comprehensive benchmark by simulating, laying out, and determining hardware requirements of the CNN component of our system. We parallelize the execution of convolution layer kernels on separate analog crossbars to enable 2 orders of magnitude reduction in latency compared to SOTA hybrid Memristive-CMOS Deep Learning (DL) accelerators. Furthermore, we investigate the effects of non-idealities on our system and investigate Quantization Aware Training (QAT) to mitigate the performance degradation due to low Analog-to-Digital Converter (ADC)/Digital-to-Analog Converter (DAC) resolution. Finally, we propose a stuck weight offsetting methodology to mitigate performance degradation due to stuck [Formula: see text] memristor weights, recovering up to 32% accuracy, without requiring retraining. The CNN component of our platform is estimated to consume approximately 2.791 W of power while occupying an area of 31.255 mm2 in a 22 nm FDSOI CMOS process.


Subject(s)
Epilepsy , Neural Networks, Computer , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Oxides , Seizures/diagnosis
4.
Front Neurosci ; 16: 850945, 2022.
Article in English | MEDLINE | ID: mdl-35527819

ABSTRACT

Working memory is a fundamental feature of biological brains for perception, cognition, and learning. In addition, learning with working memory, which has been show in conventional artificial intelligence systems through recurrent neural networks, is instrumental to advanced cognitive intelligence. However, it is hard to endow a simple neuron model with working memory, and to understand the biological mechanisms that have resulted in such a powerful ability at the neuronal level. This article presents a novel self-adaptive multicompartment spiking neuron model, referred to as SAM, for spike-based learning with working memory. SAM integrates four major biological principles including sparse coding, dendritic non-linearity, intrinsic self-adaptive dynamics, and spike-driven learning. We first describe SAM's design and explore the impacts of critical parameters on its biological dynamics. We then use SAM to build spiking networks to accomplish several different tasks including supervised learning of the MNIST dataset using sequential spatiotemporal encoding, noisy spike pattern classification, sparse coding during pattern classification, spatiotemporal feature detection, meta-learning with working memory applied to a navigation task and the MNIST classification task, and working memory for spatiotemporal learning. Our experimental results highlight the energy efficiency and robustness of SAM in these wide range of challenging tasks. The effects of SAM model variations on its working memory are also explored, hoping to offer insight into the biological mechanisms underlying working memory in the brain. The SAM model is the first attempt to integrate the capabilities of spike-driven learning and working memory in a unified single neuron with multiple timescale dynamics. The competitive performance of SAM could potentially contribute to the development of efficient adaptive neuromorphic computing systems for various applications from robotics to edge computing.

5.
Neural Netw ; 152: 311-321, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35594759

ABSTRACT

Suspended sediment is a significant threat to the Great Barrier Reef (GBR) ecosystem. This catchment pollutant stems primarily from terrestrial soil erosion. Bulk masses of sediments have potential to propagate from river plumes into the mid-shelf and outer-shelf regions. Existing sediment forecasting methods suffer from the problem of low-resolution predictions, making them unsuitable for wide area coverage. In this paper, a novel sediment distribution prediction model is proposed to augment existing water quality management programs for the GBR. This model is based on the state-of-the-art Transformer network in conjunction with the well-known finite element analysis. For model training, the emerging physics-informed neural network is employed to incorporate both simulated and measured sediment data. Our proposed Finite Element Transformer (FE-Transformer) model offers accurate predictions of sediment across the entire GBR. It provides unblurred outputs, which cannot be achieved with previous next-frame prediction models. This paves a way for accurate forecasting of sediment, which in turn may lead to improved water quality management for the GBR.


Subject(s)
Ecosystem , Geologic Sediments , Finite Element Analysis , Rivers
6.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7126-7140, 2022 12.
Article in English | MEDLINE | ID: mdl-34115596

ABSTRACT

Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this system can learn associations between stimulation and response in two context-dependent learning tasks from experimental neuroscience, despite possible faults in the hardware nodes. Furthermore, we demonstrate how our novel fault-tolerant neuromorphic spike routing scheme can avoid multiple fault nodes successfully and can enhance the maximum throughput of the neuromorphic network by 0.9%-16.1% in comparison with previous studies. By utilizing the real-time computational capabilities and multiple-fault-tolerant property of the proposed system, the neuronal mechanisms underlying the spiking activities of neuromorphic networks can be readily explored. In addition, the proposed system can be applied in real-time learning and decision-making applications, brain-machine integration, and the investigation of brain cognition during learning.


Subject(s)
Algorithms , Neural Networks, Computer , Neurons/physiology , Computers , Brain/physiology
7.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4398-4412, 2022 09.
Article in English | MEDLINE | ID: mdl-33621181

ABSTRACT

The cerebellum plays a vital role in motor learning and control with supervised learning capability, while neuromorphic engineering devises diverse approaches to high-performance computation inspired by biological neural systems. This article presents a large-scale cerebellar network model for supervised learning, as well as a cerebellum-inspired neuromorphic architecture to map the cerebellar anatomical structure into the large-scale model. Our multinucleus model and its underpinning architecture contain approximately 3.5 million neurons, upscaling state-of-the-art neuromorphic designs by over 34 times. Besides, the proposed model and architecture incorporate 3411k granule cells, introducing a 284 times increase compared to a previous study including only 12k cells. This large scaling induces more biologically plausible cerebellar divergence/convergence ratios, which results in better mimicking biology. In order to verify the functionality of our proposed model and demonstrate its strong biomimicry, a reconfigurable neuromorphic system is used, on which our developed architecture is realized to replicate cerebellar dynamics during the optokinetic response. In addition, our neuromorphic architecture is used to analyze the dynamical synchronization within the Purkinje cells, revealing the effects of firing rates of mossy fibers on the resonance dynamics of Purkinje cells. Our experiments show that real-time operation can be realized, with a system throughput of up to 4.70 times larger than previous works with high synaptic event rate. These results suggest that the proposed work provides both a theoretical basis and a neuromorphic engineering perspective for brain-inspired computing and the further exploration of cerebellar learning.


Subject(s)
Models, Neurological , Neural Networks, Computer , Brain/physiology , Cerebellum/physiology , Neurons/physiology
8.
Sci Rep ; 11(1): 17379, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462458

ABSTRACT

Estimating fish body measurements like length, width, and mass has received considerable research due to its potential in boosting productivity in marine and aquaculture applications. Some methods are based on manual collection of these measurements using tools like a ruler which is time consuming and labour intensive. Others rely on fully-supervised segmentation models to automatically acquire these measurements but require collecting per-pixel labels which are also time consuming. It can take up to 2 minutes per fish to acquire accurate segmentation labels. To address this problem, we propose a segmentation model that can efficiently train on images labeled with point-level supervision, where each fish is annotated with a single click. This labeling scheme takes an average of only 1 second per fish. Our model uses a fully convolutional neural network with one branch that outputs per-pixel scores and another that outputs an affinity matrix. These two outputs are aggregated using a random walk to get the final, refined per-pixel output. The whole model is trained end-to-end using the localization-based counting fully convolutional neural network (LCFCN) loss and thus we call our method Affinity-LCFCN (A-LCFCN). We conduct experiments on the DeepFish dataset, which contains several fish habitats from north-eastern Australia. The results show that A-LCFCN outperforms a fully-supervised segmentation model when the annotation budget is fixed. They also show that A-LCFCN achieves better segmentation results than LCFCN and a standard baseline.


Subject(s)
Fishes/physiology , Neural Networks, Computer , Animals , Databases, Factual , Ecosystem , Image Processing, Computer-Assisted/methods , User-Computer Interface
9.
IEEE J Biomed Health Inform ; 25(10): 3865-3873, 2021 10.
Article in English | MEDLINE | ID: mdl-34057902

ABSTRACT

Health professionals extensively use Two-Dimensional (2D) Ultrasound (US) videos and images to visualize and measure internal organs for various purposes including evaluation of muscle architectural changes. US images can be used to measure abdominal muscles dimensions for the diagnosis and creation of customized treatment plans for patients with Low Back Pain (LBP), however, they are difficult to interpret. Due to high variability, skilled professionals with specialized training are required to take measurements to avoid low intra-observer reliability. This variability stems from the challenging nature of accurately finding the correct spatial location of measurement endpoints in abdominal US images. In this paper, we use a Deep Learning (DL) approach to automate the measurement of the abdominal muscle thickness in 2D US images. By treating the problem as a localization task, we develop a modified Fully Convolutional Network (FCN) architecture to generate blobs of coordinate locations of measurement endpoints, similar to what a human operator does. We demonstrate that using the TrA400 US image dataset, our network achieves a Mean Absolute Error (MAE) of 0.3125 on the test set, which almost matches the performance of skilled ultrasound technicians. Our approach can facilitate next steps for automating the process of measurements in 2D US images, while reducing inter-observer as well as intra-observer variability for more effective clinical outcomes.


Subject(s)
Deep Learning , Abdominal Muscles/diagnostic imaging , Humans , Observer Variation , Reproducibility of Results , Ultrasonography
10.
IEEE Trans Biomed Circuits Syst ; 14(6): 1138-1159, 2020 12.
Article in English | MEDLINE | ID: mdl-33156792

ABSTRACT

The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies including emerging memristive devices, Field Programmable Gate Arrays (FPGAs), and Complementary Metal Oxide Semiconductor (CMOS) can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. The tutorial is augmented with case studies of the vast literature on neural network and neuromorphic hardware as applied to the healthcare domain. We benchmark various hardware platforms by performing a sensor fusion signal processing task combining electromyography (EMG) signals with computer vision. Comparisons are made between dedicated neuromorphic processors and embedded AI accelerators in terms of inference latency and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that various accelerators and neuromorphic processors introduce to healthcare and biomedical domains.


Subject(s)
Biomedical Engineering , Deep Learning , Signal Processing, Computer-Assisted , Algorithms , Computers , Electromyography , Humans , Internet of Things , Point-of-Care Systems
11.
Sci Rep ; 9(1): 2058, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765729

ABSTRACT

Robotic weed control has seen increased research of late with its potential for boosting productivity in agriculture. Majority of works focus on developing robotics for croplands, ignoring the weed management problems facing rangeland stock farmers. Perhaps the greatest obstacle to widespread uptake of robotic weed control is the robust classification of weed species in their natural environment. The unparalleled successes of deep learning make it an ideal candidate for recognising various weed species in the complex rangeland environment. This work contributes the first large, public, multiclass image dataset of weed species from the Australian rangelands; allowing for the development of robust classification methods to make robotic weed control viable. The DeepWeeds dataset consists of 17,509 labelled images of eight nationally significant weed species native to eight locations across northern Australia. This paper presents a baseline for classification performance on the dataset using the benchmark deep learning models, Inception-v3 and ResNet-50. These models achieved an average classification accuracy of 95.1% and 95.7%, respectively. We also demonstrate real time performance of the ResNet-50 architecture, with an average inference time of 53.4 ms per image. These strong results bode well for future field implementation of robotic weed control methods in the Australian rangelands.


Subject(s)
Weed Control/methods , Agriculture/methods , Australia , Crops, Agricultural/growth & development , Deep Learning , Environment , Machine Learning , Neural Networks, Computer , Robotics/methods
12.
IEEE Trans Biomed Circuits Syst ; 11(2): 434-445, 2017 04.
Article in English | MEDLINE | ID: mdl-28026782

ABSTRACT

Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.


Subject(s)
Models, Neurological , Neural Networks, Computer , Semiconductors , Animals , Electronics , Neurons , Synapses
SELECTION OF CITATIONS
SEARCH DETAIL