Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Appl Microbiol ; 130(2): 394-404, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32734653

ABSTRACT

AIMS: This study aimed synergistic effects of three herbs in Salmonella via increased membrane permeability and apoptosis. METHODS AND RESULTS: Using high-performance liquid chromatography, four types of phenylethyl glycosides and a lignan were detected in the herb mixture (Brassica juncea, Forsythia suspensa, and Inula britannica). During treatment with the herb mixture (1×, 2×, or 4× the MIC), viable cells decreased to 1·87 log CFU per ml (Salmonella Gallinarum) and 2·33 log CFU per ml (Salmonella Enteritidis) after 12 h of incubation according to inhibition of tricarboxylic acid cycle (P < 0·01). In addition, N-phenyl-1-naphthylamine uptake increased from 229·00 to 249·67 AU in S. Gallinarum and from 232·00 to 250·67 AU in S. Enteritidis (P < 0·05), whereas membrane potential decreased from 8855·00 to 3763·25 AU and from 8703·67 to 4300·38 AU, respectively. Apoptotic Salmonella cells were observed by confocal laser scanning microscopy and flow cytometry. Transmission electron microscopy observations with negative staining showed protein leakage from damaged Salmonella. CONCLUSIONS: These results showed the synergistic effect of the three herbs against avian pathogenic Salmonella induced by membrane damage and apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY: Salmonella causes enormous economic losses in the poultry industry. These results indicated that potency of natural antimicrobial agents due to apoptosis in Salmonella.


Subject(s)
Anti-Infective Agents/pharmacology , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Forsythia/chemistry , Inula/chemistry , Mustard Plant/chemistry , Salmonella/drug effects , Animals , Anti-Infective Agents/chemistry , Microbial Viability/drug effects , Plants, Medicinal/chemistry , Salmonella/growth & development , Salmonella/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL