Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Vet Res ; 55(1): 99, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107851

ABSTRACT

Scrapie is a transmissible spongiform encephalopathy affecting sheep and goats. The prion protein-encoding gene (PRNP) plays a crucial role in determining susceptibility and resistance to scrapie. At the European level, surveillance of scrapie is essential to prevent the spread of the disease to livestock. According to the Regulation EU 2020/772 polymorphisms K222, D/S146 could function as resistance alleles in the genetic management of disease prevention. In Italy, a breeding plan for scrapie eradication has not been implemented for goats. However, surveillance plans based on the PRNP genotype have been developed as a preventive measure for scrapie. This research aimed to describe the polymorphisms at 7 positions within the PRNP gene in 956 goats of the Alpine, Saanen and mixed populations farmed in the Lombardy Region in Italy. PRNP polymorphisms were detected using single nucleotide polymorphism markers included in the Neogen GGP Goat 70 k chip. The K222 allele occurred in all populations, with frequencies ranging from 2.1 to 12.7%. No animals carried the S/D146 resistance allele. However, it has been demonstrated that polymorphisms in the other positions analysed could influence resistance or susceptibility to scrapie outbreaks in different ways. Ten potentially distinct haplotypes were found, and the most prevalent of the three populations was H2, which differed from the wild type (H1) in terms of mutation (S vs P) at codon 240. This study provided additional information on the genetic variability of the PRNP gene in these populations in the Lombardy region of Italy, contributing to the development of genetic control measures for disease prevention.


Subject(s)
Goat Diseases , Goats , Prion Proteins , Scrapie , Animals , Italy/epidemiology , Goats/genetics , Goat Diseases/genetics , Goat Diseases/epidemiology , Prion Proteins/genetics , Scrapie/genetics , Scrapie/epidemiology , Codon/genetics , Genetic Variation , Polymorphism, Single Nucleotide
2.
PLoS One ; 19(5): e0303044, 2024.
Article in English | MEDLINE | ID: mdl-38771855

ABSTRACT

Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.


Subject(s)
DNA Copy Number Variations , Polymorphism, Single Nucleotide , Cattle/genetics , Animals , Italy , Female , Breeding , Genotype , Phenotype
3.
Foods ; 12(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38002189

ABSTRACT

The increasing number of food frauds, mainly targeting high quality products, is a rising concern among producers and authorities appointed to food controls. Therefore, the development or implementation of methods to reveal frauds is desired. The genetic traceability of traditional or high-quality dairy products (i.e., products of protected designation of origin, PDO) represents a challenging issue due to the technical problems that arise. The aim of the study was to set up a genetic tool for the origin traceability of dairy products. We investigated the use of Short Tandem Repeats (STRs) to assign milk and cheese to the corresponding producer. Two farms were included in the study, and the blood of the cows, bulk milk, and derived cheese were sampled monthly for one year. Twenty STRs were selected and Polymerase Chain Reactions for each locus were carried out. The results showed that bulk milk and derived cheese express an STR profile composed of a subset of STRs of the lactating animals. A bioinformatics tool was used for the exclusion analysis. The study allowed the identification of a panel of 20 markers useful for the traceability of milk and cheeses, and its effectiveness in the traceability of dairy products obtained from small producers was demonstrated.

4.
Animals (Basel) ; 13(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37835678

ABSTRACT

Belted pig breeds have unique, distinguishing phenotypic characteristics. This review summarises the current knowledge on pig breeds displaying a belted coat pattern. Belts of different widths and positions around the animal's trunk characterise specific pig breeds from all around the world. All the breeds included in the present paper have been searched through the FAO domestic animal diversity information system (DAD-IS), Every country was checked to identify all breeds described as having black or red piebald coat pattern variations. Advances in genomic technologies have made it possible to identify the specific genes and genetic markers associated with the belted phenotype and explore the genetic relationships between different local breeds. Thus, the origin, history, and production traits of these breeds, together with all the genomic information related to the mechanism of skin pigmentation, are discussed. By increasing our understanding of these breeds, we can appreciate the richness of our biological and cultural heritage and work to preserve the biodiversity of the world's animals.

5.
Anim Genet ; 54(3): 239-253, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36737525

ABSTRACT

We used genome-wide SNP data from 18 local cattle breeds from six countries of the Alpine region to characterize population structure and identify genomic regions underlying positive selection. The geographically close breeds Evolèner, Eringer, Valdostana Pezzata Nera, and Valdostana Castana were found to differ from all other Alpine breeds. In addition, three breeds, Simmental, and Original Braunvieh from Switzerland and Pinzgauer from Austria built three separate clusters. Of the 18 breeds studied, the intra-alpine Swiss breed Evolèner had the highest average inbreeding based on runs of homozygosity (FROH ) and the highest average genomic relationship within the breed. In contrast, Slovenian Cika cattle had the lowest average genomic inbreeding and the lowest average genomic relationship within the breed. We found selection signatures on chromosome 6 near known genes such as KIT and LCORL explaining variation in coat color and body size in cattle. The most prominent selection signatures were similar regardless of marker density and the breeds in the data set. In addition, using available high-density SNP data from 14 of the breeds we identified 47 genome regions as ROH islands. The proportion of homozygous animals was higher in all studied animals of local breeds than in Holstein and Brown Swiss cattle, the two most important commercial breeds in the Alpine region. We report ROH islands near genes related to thermoregulation, coat color, production, and stature. The results of this study serve as a basis for the search for causal variants underlying adaptation to the alpine environment and other specific characteristics selected during the evolution of local Alpine cattle breeds.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Cattle , Animals , Genotype , Inbreeding , Homozygote , Genomics/methods
6.
Genes (Basel) ; 12(9)2021 08 28.
Article in English | MEDLINE | ID: mdl-34573324

ABSTRACT

Italian autochthonous turkey breeds are an important reservoir of genetic biodiversity that should be maintained with an in vivo approach. The aim of this study, part of the TuBAvI national project on biodiversity, was to use run of homozygosity (ROH), together with others statistical approaches (e.g., Wright's F-statistics, principal component analysis, ADMIXTURE analysis), to investigate the genomic diversity in several heritage turkey breeds. We performed a genome-wide characterization of ROH-rich regions in seven autochthonous turkey breeds, i.e., Brianzolo (Brzl), Bronzato Comune Italiano (BrCI), Bronzato dei Colli Euganei (CoEu), Parma e Piacenza (PrPc), Nero d'Italia (NeIt), Ermellinato di Rovigo (ErRo) and Romagnolo (Roma). ROHs were detected based on a 650K SNP genotyping. ROH_islands were identified as homozygous ROH regions shared by at least 75% of birds (within breed). Annotation of genes was performed with DAVID. The admixture analyses revealed that six breeds are unique populations while the Roma breed consists in an admixture of founder populations. Effective population size estimated on genomic data shows a numeric contraction. ROH_islands harbour genes that may be interesting for target selection in commercial populations also. Among them the PTGS2 and PLA2G4A genes on chr10 were related to reproduction efficiency. This is the first study mapping genetic variation in autochthonous turkey populations. Breeds were genetically different among them, with the Roma breed proving to be a mixture of the other breeds. The ROH_islands identified harboured genes peculiar to the selection that occurred in heritage breeds. Finally, this study releases previously undisclosed information on existing genetic variation in the turkey species.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Reproduction/genetics , Turkeys/genetics , Animals , Biodiversity , Female , Genomics , Homozygote , Italy , Male , Population Density , Selection, Genetic
8.
Genome Biol Evol ; 13(6)2021 06 08.
Article in English | MEDLINE | ID: mdl-34009300

ABSTRACT

Domestication of the helmeted guinea fowl (HGF; Numida meleagris) in Africa remains elusive. Here we report a high-quality de novo genome assembly for domestic HGF generated by long- and short-reads sequencing together with optical and chromatin interaction mapping. Using this assembly as the reference, we performed population genomic analyses for newly sequenced whole-genomes for 129 birds from Africa, Asia, and Europe, including domestic animals (n = 89), wild progenitors (n = 34), and their closely related wild species (n = 6). Our results reveal domestication of HGF in West Africa around 1,300-5,500 years ago. Scanning for selective signals characterized the functional genes in behavior and locomotion changes involved in domestication of HGF. The pleiotropy and linkage in genes affecting plumage color and fertility were revealed in the recent breeding of Italian domestic HGF. In addition to presenting a missing piece to the jigsaw puzzle of domestication in poultry, our study provides valuable genetic resources for researchers and breeders to improve production in this species.


Subject(s)
Domestication , Galliformes/genetics , Genome , Phylogeny , Animals , Genetic Variation , Male , Phylogeography , Selection, Genetic
9.
BMC Genomics ; 22(1): 305, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902439

ABSTRACT

BACKGROUND: In Iran, river buffalo is of great importance. It plays an important role in the economy of the Country, because its adaptation to harsh climate conditions and long productive lifespan permitting its farming across the Country and to convert low-quality feed into valuable milk. The genetic variability in Iranian buffalo breeds have been recently studied using SNPs genotyping data, but a whole genome Copy Number Variants (CNVs) mapping was not available. The aim of this study was to perform a genome wide CNV scan in 361 buffaloes of the three Iranian river breeds (Azeri, Khuzestani and Mazandarani) through the analysis of data obtained using the Axiom® Buffalo Genotyping Array 90 K. RESULTS: CNVs detection resulted in a total of 9550 CNVs and 302 CNVRs identified in at least 5% of samples within breed, covering around 1.97% of the buffalo genome. and A total of 22 CNVRs were identified in all breeds and a different proportion of regions were in common among the three populations. Within the more represented CNVRs (n = 302) mapped a total of 409 buffalo genes, some of which resulted associated with morphological, healthy, milk, meat and reproductive traits, according to Animal Genome Cattle database. CONCLUSIONS: This work provides a step forward in the interpretation of genomic variation within and among the buffalo populations, releasing a first map of CNVs and providing insights about their recent selection and adaptation to environment. The presence of the set of genes and QTL traits harbored in the CNVRs could be possibly linked with the buffalo's natural adaptive history together to a recent selection for milk used as primary food source from this species.


Subject(s)
Buffaloes , DNA Copy Number Variations , Animals , Buffaloes/genetics , Cattle , Genome , Iran , Phenotype , Polymorphism, Single Nucleotide
10.
Animals (Basel) ; 10(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322839

ABSTRACT

The Aosta Red Pied (Valdostana Pezzata Rossa (VRP)), the Aosta Black Pied (Valdostana Pezzata Nera (VBP)) and the Aosta Chestnut (Valdostana Castana (CAS)) are dual-purpose cattle breeds (meat and milk), very well adapted to the harsh environmental conditions of alpine territories: their farming is in fact characterized by summer pasture at very high altitude. A total of 728 individuals were genotyped with the GeenSeek Genomic Profiler® (GGP) Bovine 150K Illumina SNP chip as a part of the DUALBREEDING-PSRN Italian-funded research project. The genetic diversity among populations showed that the three breeds are distinct populations based on the FST values, ADMIXTURE and Principal Component Analysis (PCA) results. Runs of Homozygosity (ROH) were obtained for the three populations to disclose recent autozygosity. The genomic inbreeding based on the ROH was calculated and coupled with information derived from the F (inbreeding coefficient) and FST parameters. The mean FROH values were low: CAS = 0.06, VBP = 0.05 and VRP = 0.07, while the average F values were -0.003, -0.01 and -0.003, respectively. The annotation and enrichment analysis, performed in the identified most frequent ROH (TOP_ROH), showed genes that can be linked to the resilience capacity of these populations to harsh environmental farming conditions, and to the peculiar characteristics searched for by farmers in each breed.

11.
Animals (Basel) ; 10(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192001

ABSTRACT

The German Shorthaired Pointer (GSHP) is a breed worldwide known for its hunting versatility. Dogs of this breed are appreciated as valuable companions, effective trackers, field trailers and obedience athletes. The aim of the present work is to describe the genomic architecture of the GSHP breed and to analyze inbreeding levels under a genomic and a genealogic perspective. A total of 34 samples were collected (24 Italian, 10 USA), and the genomic and pedigree coefficients of inbreeding have been calculated. A total of 3183 runs of homozygosity (ROH) across all 34 dogs have been identified. The minimum and maximum number of Single Nucleotide Polymorphisms (SNPs) defining all ROH are 40 and 3060. The mean number of ROH for the sample was 93.6. ROH were found on all chromosomes. A total of 854 SNPs (TOP_SNPs) defined 11 ROH island regions (TOP_ROH), in which some gene already associated with behavioral and morphological canine traits was annotated. The proportion of averaged observed homozygotes estimated on total number of SNPs was 0.70. The genomic inbreeding coefficient based on ROH was 0.17. The mean inbreeding based on genealogical information resulted 0.023. The results describe a low inbred population with quite a good level of genetic variability.

12.
Reprod Domest Anim ; 55 Suppl 2: 4-9, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31913541

ABSTRACT

Pedigree dogs and cats are bred aiming to conform breed standards with very poor consideration for breeding stock fertility. At the same time, the genetic asset underlining reproductive traits could be effectively analysed like in other species under selection. The definition of selection targets is very important in breeding protocols determination. The aim of the present work is to present an overview of the different correlations between reproduction and genetics, starting from selection procedure and inbreeding coefficient moving to genomic and the application of SNPs and GWAS on population study and identification of genes involved in phenotypical variation of reproductive traits in dogs. Particular relevance has been given to the concept of inbreeding which effects on canine reproduction have been presented. The use of genomic information in inbreeding coefficient calculation can be considered an improved effective procedure in the evaluation of the genetic variability loss in canine population and its negative effects on reproductive traits.


Subject(s)
Breeding/methods , Dogs/genetics , Fertility/genetics , Animals , Birth Weight , Cesarean Section/veterinary , Female , Inbreeding , Male , Reproduction/genetics , Selection, Genetic
13.
Front Genet ; 10: 982, 2019.
Article in English | MEDLINE | ID: mdl-31737031

ABSTRACT

This study aims at investigating genomic diversity of several turkey populations using Copy Number Variants (CNVs). A total of 115 individuals from six Italian breeds (Colle Euganei, Bronzato Comune Italiano, Parma e Piacenza, Brianzolo, Nero d'Italia, and Ermellinato di Rovigo), seven Narragansett, 38 commercial hybrids, and 30 Mexican turkeys, were genotyped with the Affymetrix 600K single nucleotide polymorphism (SNP) turkey array. The CNV calling was performed with the Hidden Markov Model of PennCNV software and with the Copy Number Analysis Module of SVS 8.4 by Golden Helix®. CNV were summarized into CNV regions (CNVRs) at population level using BEDTools. Variability among populations has been addressed by hierarchical clustering (pvclust R package) and by principal component analysis (PCA). A total of 2,987 CNVs were identified covering 4.65% of the autosomes of the Turkey_5.0/melGal5 assembly. The CNVRs identified in at least two individuals were 362-189 gains, 116 losses, and 57 complexes. Among these regions the 51% contain annotated genes. This study is the first CNV mapping of turkey population using 600K chip. CNVs clustered the individuals according to population and their geographical origin. CNVs are known to be indicators also of adaptation, as some researches in different species are suggesting.

14.
Animals (Basel) ; 9(9)2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31480266

ABSTRACT

Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, genetic studies, like genome-wide association studies (GWAS) have greatly improved the investigation of complex diseases identifying thousands of disease-associated genomic variants. Here, we present evidence of genetic variants associated with resistance to TB in Mexican dairy cattle using a case-control approach with a selective DNA pooling experimental design. A total of 154 QTLRs (quantitative trait loci regions) at 10% PFP (proportion of false positives), 42 at 5% PFP and 5 at 1% PFP have been identified, which harbored 172 annotated genes. On BTA13, five new QTLRs were identified in the MACROD2 and KIF16B genes, supporting their involvement in resistance to bTB. Six QTLRs harbor seven annotated genes that have been previously reported as involved in immune response against Mycobacterium spp: BTA (Bos taurus autosome) 1 (CD80), BTA3 (CTSS), BTA 3 (FCGR1A), BTA 23 (HFE), BTA 25 (IL21R), and BTA 29 (ANO9 and SIGIRR). We identified novel QTLRs harboring genes involved in Mycobacterium spp. immune response. This is a first screening for resistance to TB infection on Mexican dairy cattle based on a dense SNP (Single Nucleotide Polymorphism) chip.

15.
PLoS One ; 14(4): e0215204, 2019.
Article in English | MEDLINE | ID: mdl-31013280

ABSTRACT

Copy number variation (CNV) is a major source of genomic structural variation. The aim of this study was to detect genomic CNV regions (CNVR) in Valle del Belice dairy sheep population and to identify those affecting milk production traits. The GO analysis identified possible candidate genes and pathways related to the selected traits. We identified CNVs in 416 individuals genotyped using the Illumina OvineSNP50 BeadChip array. The CNV association using a correlation-trend test model was examined with the Golden Helix SVS 8.7.0 tool. Significant CNVs were detected when their adjusted p-value was <0.01 after false discovery rate (FDR) correction. We identified 7,208 CNVs, which gave 365 CNVRs after aggregating overlapping CNVs. Thirty-one CNVRs were significantly associated with one or more traits included in the analysis. All CNVRs, except those on OAR19, overlapped with quantitative trait loci (QTL), even if they were not directly related to the traits of interest. A total of 222 genes were annotated within the significantly associated CNVRs, most of which played important roles in biological processes related to milk production and health-related traits. Identification of the genes in the CNVRs associated with the studied traits will provide the basis for further investigation of their role in the metabolic pathways related to milk production and health traits.


Subject(s)
DNA Copy Number Variations , Lactation/genetics , Quantitative Trait Loci , Sheep/genetics , Animals , Chromosome Mapping , Dairying , Female , Genome-Wide Association Study , Genotype
16.
PeerJ ; 6: e4889, 2018.
Article in English | MEDLINE | ID: mdl-30202639

ABSTRACT

BACKGROUND: The Akhal-Teke horse (AKH) is native of the modern Turkmenistan area. It was introduced in Italy from 1991 to 2000 mainly as an endurance horse. This paper characterizes the genetic variability of the whole Italian AKH horse population and evaluates their inbreeding level by analyzing microsatellite markers and mitochondrial D-Loop sequences. METHODS: Seventeen microsatellite marker loci were genotyped on 95 DNA samples from almost all the AKH horses bred in Italy in the last 20 years. Standard genetic variability measures (Ho, He, FIS) were compared against the same variables published on other eight AKH populations. In addition, 397 bp of mtDNA D-loop region were sequenced on a sub-group of 22 unrelated AKH out of the 95 sampled ones, and on 11 unrelated Arab horses. The haplotypes identified in the Italian population were aligned to sequences of AKH (56), Arab (five), Caspian Pony (13), Przewalskii (two) and Barb (15) horses available in GenBank. The Median Joining Network (MJN), Principal Component Analysis (PCA) and Neighbor-joining (NJ) tree were calculated on the total 126 sequences. RESULTS: Nucleic markers showed a high degree of polymorphism (Ho = 0.642; He = 0.649) and a low inbreeding level (FIS = 0.016) in Italian horses, compared to other AKH populations (ranged from -0.103 AKH from Estonia to 0.114 AKH from Czech Republic). High variability was also recorded in the D-Loop region. 11 haplotypes were identified with haplotype diversity (hd), nucleotide diversity (π) and average number of nucleotide differences (k) of 0.938, 0.021 and 6.448, respectively. When all the 126 D-Loop sequences were compared, 51 haplotypes were found, and four were here found only in the Italian AKH horses. The 51 haplotypes were conformed to eight recognized mtDNA haplogroups (A, C, F, G, L, M, P and Q) and confirmed by MJN analysis, Italian horses being assigned to five haplogroups (A, C, G, L and M). Using a PCA approach to the same data, the total haplotypes were grouped into two clusters including A+C+M+P and G+F haplogroups, while L and Q haplogroups remained ungrouped. Finally, the NJ algorithm effectively discretizes only the L haplogroup. All the above data univocally indicate good genetic variability and accurate management of the Akhal-Teke population in Italy.

17.
PLoS One ; 13(9): e0204669, 2018.
Article in English | MEDLINE | ID: mdl-30261013

ABSTRACT

Copy number variants (CNVs) are an important source of genomic structural variation, recognized to influence phenotypic variation in many species. Many studies have focused on identifying CNVs within and between human and livestock populations alike, but only few have explored population-genetic properties in cattle based on CNVs derived from a high-density SNP array. We report a high-resolution CNV scan using Illumina's 777k BovineHD Beadchip for Valdostana Red Pied (VRP), an autochthonous Italian dual-purpose cattle population reared in the Alps that did not undergo strong selection for production traits. After stringent quality control and filtering, CNVs were called across 108 bulls using the PennCNV software. A total of 6,784 CNVs were identified, summarized to 1,723 CNV regions (CNVRs) on 29 autosomes covering a total of ~59 Mb of the UMD3.1 assembly. Among the mapped CNVRs, there were 812 losses, 832 gains and 79 complexes. We subsequently performed a comparison of CNVs detected in the VRP and those available from published studies in the Italian Brown Swiss (IBS) and Mexican Holstein (HOL). A total of 171 CNVRs were common to all three breeds. Between VRP and IBS, 474 regions overlapped, while only 313 overlapped between VRP and HOL, indicating a more similar genetic background among populations with common origins, i.e. the Alps. The principal component, clustering and admixture analyses showed a clear separation of the three breeds into three distinct clusters. In order to describe the distribution of CNVs within and among breeds we used the pair VST statistic, considering only the CNVRs shared to more than 5 individuals (within breed). We identified unique and highly differentiated CNVs (n = 33), some of which could be due to specific breed selection and adaptation. Genes and QTL within these regions were characterized.


Subject(s)
Cattle/genetics , DNA Copy Number Variations , Animals , Breeding , Cattle/classification , Chromosome Mapping/veterinary , Dairying , Genetics, Population/statistics & numerical data , Italy , Male , Mexico , Polymorphism, Single Nucleotide , Principal Component Analysis , Quantitative Trait Loci , Software , Species Specificity
18.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29940848

ABSTRACT

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Subject(s)
Animals, Domestic/genetics , Conservation of Natural Resources/methods , Genetic Variation , Polymorphism, Single Nucleotide , Animals , Breeding , Cattle , Evolution, Molecular , Genetics, Population , Genome-Wide Association Study , Linkage Disequilibrium , Phylogeny , Population Density
19.
Nat Genet ; 50(3): 362-367, 2018 03.
Article in English | MEDLINE | ID: mdl-29459679

ABSTRACT

Stature is affected by many polymorphisms of small effect in humans 1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.


Subject(s)
Body Size/genetics , Cattle/genetics , Conserved Sequence , Genome-Wide Association Study , Mammals/genetics , Animals , Body Height/genetics , Cattle/classification , Genetic Association Studies/veterinary , Genetic Variation , Genome-Wide Association Study/statistics & numerical data , Genome-Wide Association Study/veterinary , Humans , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(3): 409-418, 2018 04.
Article in English | MEDLINE | ID: mdl-28278690

ABSTRACT

Donkeys have played an important role in agricultural land practices and in human historical periods of recent past and, still today, are used as a working power in several world areas. The objective of this study was to identify genetic variability in six Italian donkey breeds using mtDNA D-loop. Fifteen haplotypes, grouped in three haplogroups, were identified. The genetic indices were informative and showed a high population genetic variability. The results of AMOVA analyses based on geographic structuring of Italian populations highlighted that the majority of the observed variance is due to differences among samples within breeds. Comparison among Italian haplotypes and mtDNA D-loop sequences belonging to European domestic and Ethiopian donkeys and wild asses, clearly define two clades referred to Nubian lineage. The results can be useful to complement safeguard planes for donkey breeds that are considered to extinction endangered.


Subject(s)
DNA, Mitochondrial/genetics , Equidae/classification , Genetic Variation , Sequence Analysis, DNA/methods , Animals , Breeding , DNA, Mitochondrial/chemistry , Equidae/genetics , Ethiopia , Europe , Genetics, Population , Haplotypes , Italy , Phylogeny , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL