Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955331

ABSTRACT

OBJECTIVE: The trend in the medical field is towards intelligent detection-based medical diagnostic systems. However, these methods are often seen as "black boxes" due to their lack of interpretability. This situation presents challenges in identifying reasons for misdiagnoses and improving accuracy, which leads to potential risks of misdiagnosis and delayed treatment. Therefore, how to enhance the interpretability of diagnostic models is crucial for improving patient outcomes and reducing treatment delays. So far, only limited researches exist on deep learning-based prediction of spontaneous pneumothorax, a pulmonary disease that affects lung ventilation and venous return. Approach. This study develops an integrated medical image analysis system using explainable deep learning model for image recognition and visualization to achieve an interpretable automatic diagnosis process. Main results. The system achieves an impressive 95.56% accuracy in pneumothorax classification, which emphasizes the significance of the blood vessel penetration defect in clinical judgment. Significance. This would lead to improve model trustworthiness, reduce uncertainty, and accurate diagnosis of various lung diseases, which results in better medical outcomes for patients and better utilization of medical resources. Future research can focus on implementing new deep learning models to detect and diagnose other lung diseases that can enhance the generalizability of this system. .

2.
Heliyon ; 10(9): e30023, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726131

ABSTRACT

Primary spontaneous pneumothorax (PSP) primarily affects slim and tall young males. Exploring the etiological link between chest wall structural characteristics and PSP is crucial for advancing treatment methods. In this case-control study, chest computed tomography (CT) images from patients undergoing thoracic surgery, with or without PSP, were analyzed using Artificial Intelligence. Convolutional Neural Network (CNN) model of EfficientNetB3 and InceptionV3 were used with transfer learning on the Imagenet to compare the images of both groups. A heatmap was created on the chest CT scans to enhance interoperability, and the scale-invariant feature transform (SIFT) was adopted to further compare the image level. A total of 2,312 CT images of 26 non-PSP patients and 1,122 CT images of 26 PSP patients were selected. Chest-wall apex pit (CAP) was found in 25 PSP and three non-PSP patients (p < 0.001). The CNN achieved a testing accuracy of 93.47 % in distinguishing PSP from non-PSP based on chest wall features by identifying the existence of CAP. Heatmap analysis demonstrated CNN's precision in targeting the upper chest wall, accurately identifying CAP without undue influence from similar structures, or inappropriately expanding or minimizing the test area. SIFT results indicated a 10.55 % higher mean similarity within the groups compared to between PSP and non-PSP (p < 0.001). In conclusion, distinctive radiographic chest wall configurations were observed in PSP patients, with CAP potentially serving as an etiological factor linked to PSP. This study accentuates the potential of AI-assisted analysis in refining diagnostic approaches and treatment strategies for PSP.

SELECTION OF CITATIONS
SEARCH DETAIL
...