Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203706

ABSTRACT

Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.


Subject(s)
Antigens, CD , Cadherins , Endothelial Cells , Proteome , Calcium , Endocannabinoids/pharmacology , Calcium, Dietary
2.
Biol Sex Differ ; 12(1): 60, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749819

ABSTRACT

BACKGROUND: Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS: Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS: Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS: Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.


Subject(s)
Endocannabinoids , Sex Characteristics , Animals , Female , Male , Periaqueductal Gray , Proteomics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL