Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Health Threats J ; 2: e11, 2009.
Article in English | MEDLINE | ID: mdl-22460281

ABSTRACT

The unfolding of pandemic influenza A(H1N1) for Fall 2009 in the Northern Hemisphere is still uncertain. Plans for vaccination campaigns and vaccine trials are underway, with the first batches expected to be available early October. Several studies point to the possibility of an anticipated pandemic peak that could undermine the effectiveness of vaccination strategies. Here, we use a structured global epidemic and mobility metapopulation model to assess the effectiveness of massive vaccination campaigns for the Fall/Winter 2009. Mitigation effects are explored depending on the interplay between the predicted pandemic evolution and the expected delivery of vaccines. The model is calibrated using recent estimates on the transmissibility of the new A(H1N1) influenza. Results show that if additional intervention strategies were not used to delay the time of pandemic peak, vaccination may not be able to considerably reduce the cumulative number of cases, even when the mass vaccination campaign is started as early as mid-October. Prioritized vaccination would be crucial in slowing down the pandemic evolution and reducing its burden.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(2 Pt 2): 026130, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15783401

ABSTRACT

We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme performs better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising model to be z=2.13 and z=2.09 , respectively, at the pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of randomly bond diluted lattices in d=2 and 3 in the light of this transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Poissonian degree distributions.

SELECTION OF CITATIONS
SEARCH DETAIL