Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1411772, 2024.
Article in English | MEDLINE | ID: mdl-39070913

ABSTRACT

Cooking time is a crucial determinant of culinary quality of cassava roots and incorporating it into the early stages of breeding selection is vital for breeders. This study aimed to assess the potential of near-infrared spectroscopy (NIRS) in classifying cassava genotypes based on their cooking times. Five cooking times (15, 20, 25, 30, and 40 minutes) were assessed and 888 genotypes evaluated over three crop seasons (2019/2020, 2020/2021, and 2021/2022). Fifteen roots from five plants per plot, featuring diameters ranging from 4 to 7 cm, were randomly chosen for cooking analysis and spectral data collection. Two root samples (15 slices each) per genotype were collected, with the first set aside for spectral data collection, processed, and placed in two petri dishes, while the second set was utilized for cooking assessment. Cooking data were classified into binary and multiclass variables (CT4C and CT6C). Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. The spectral data were split into a training set (80%) and an external validation set (20%). For binary variables, the classification accuracy for cassava cooking time was notably high ( R C a l 2 ranging from 0.72 to 0.99). Regarding multiclass variables, accuracy remained consistent across classes, models, and NIR instruments (~0.63). However, the KNN model demonstrated slightly superior accuracy in classifying all cooking time classes, except for the CT4C variable (QST) in the NoCook and 25 min classes. Despite the increased complexity associated with binary classification, it remained more efficient, offering higher classification accuracy for samples and facilitating the selection of the most relevant time or variables, such as cooking time ≤ 30 minutes. The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached R C a l 2   = 0.86 and R V a l 2 = 0.84, with a Kappa value of 0.53. Overall, the models exhibited a robust fit for all cooking times, showcasing the significant potential of NIRs as a high-throughput phenotyping tool for classifying cassava genotypes based on cooking time.

2.
PLoS One ; 18(10): e0292385, 2023.
Article in English | MEDLINE | ID: mdl-37797072

ABSTRACT

Cassava (Manihot esculenta Crantz) is a vital crop for food and economic security in many regions of the world. Despite the economic and social importance of cassava, challenges persist in developing superior varieties that meet the needs of farmers in terms of agronomic performance, nutritional quality, and resistance to pests and diseases. One of the main obstacles for genetic improvement is the lack of synchronization in flowering and the abortion of young flowers, making planned crosses and progeny production difficult. Therefore, the aim of this study was to evaluate the effect of photoperiod, premature pruning, and growth regulators on cassava flowering under low-altitude conditions in Brazil. Eight cassava clones with contrasting flowering capacity were assessed in Cruz das Almas, Bahia, using two photoperiods (ambient condition and extended photoperiod with red light for 12 hours), premature pruning at the first and second branching levels (with and without pruning), and the application of growth regulators: 0.5 mM 6-benzyladenine (BA) and 4.0 mM silver thiosulfate (STS) (with and without). Plots were assessed weekly for the number of female (NFF) and male (NMF) flowers, height of the first branching (H1B, in cm), number of days to the first branching (ND1B), and the number of branching events up to 240 days after planting (NOB). The extended photoperiod did not promote an increase in the number of flowers but allowed for precocity in cassava flowering, reducing the onset of flowering by up to 35 days, and significantly increasing the number of branches, which is closely related to flowering. The use of pruning and plant growth regulators (PGR) resulted in an increase in NFF from 2.2 (control) to 4.6 and NMF from 8.1 to 21.1 flowers. Therefore, under hot and humid tropical conditions at low altitudes in the Recôncavo of Bahia, manipulating the photoperiod and using premature pruning and plant growth regulators can accelerate cassava flowering, benefiting genetic improvement programs.


Subject(s)
Manihot , Manihot/genetics , Photoperiod , Plant Growth Regulators , Flowers/genetics , Vegetables , Gene Expression Regulation, Plant
3.
PLoS One ; 17(1): e0263326, 2022.
Article in English | MEDLINE | ID: mdl-35100324

ABSTRACT

Phenotyping to quantify the total carotenoids content (TCC) is sensitive, time-consuming, tedious, and costly. The development of high-throughput phenotyping tools is essential for screening hundreds of cassava genotypes in a short period of time in the biofortification program. This study aimed to (i) use digital images to extract information on the pulp color of cassava roots and estimate correlations with TCC, and (ii) select predictive models for TCC using colorimetric indices. Red, green and blue images were captured in root samples from 228 biofortified genotypes and the difference in color was analyzed using L*, a*, b*, hue and chroma indices from the International Commission on Illumination (CIELAB) color system and lightness. Colorimetric data were used for principal component analysis (PCA), correlation and for developing prediction models for TCC based on regression and machine learning. A high positive correlation between TCC and the variables b* (r = 0.90) and chroma (r = 0.89) was identified, while the other correlations were median and negative, and the L* parameter did not present a significant correlation with TCC. In general, the accuracy of most prediction models (with all variables and only the most important ones) was high (R2 ranging from 0.81 to 0.94). However, the artificial neural network prediction model presented the best predictive ability (R2 = 0.94), associated with the smallest error in the TCC estimates (root-mean-square error of 0.24). The structure of the studied population revealed five groups and high genetic variability based on PCA regarding colorimetric indices and TCC. Our results demonstrated that the use of data obtained from digital image analysis is an economical, fast, and effective alternative for the development of TCC phenotyping tools in cassava roots with high predictive ability.


Subject(s)
Biodiversity , Carotenoids/metabolism , Imaging, Three-Dimensional , Manihot/genetics , Manihot/physiology , Plant Roots/physiology , Colorimetry , Genotype , Manihot/metabolism , Phenotype , Principal Component Analysis
4.
PLoS One ; 16(11): e0260576, 2021.
Article in English | MEDLINE | ID: mdl-34847205

ABSTRACT

Cassava breeding is hampered by high flower abortion rates that prevent efficient recombination among promising clones. To better understand the factors causing flower abortion and propose strategies to overcome them, we 1) analyzed the reproductive barriers to intraspecific crossing, 2) evaluated pollen-pistil interactions to maximize hand pollination efficiency, and 3) identified the population structure of elite parental clones. From 2016 to 2018, the abortion and fertilization rates of 5,748 hand crossings involving 91 parents and 157 progenies were estimated. We used 16,300 single nucleotide polymorphism markers to study the parents' population structure via discriminant analysis of principal components, and three clusters were identified. To test for male and female effects, we used a mixed model in which the environment (month and year) was fixed, while female and male (nested to female) were random effects. Regardless of the population structure, significant parental effects were identified for abortion and fertilization rates, suggesting the existence of reproductive barriers among certain cassava clones. Matching ability between cassava parents was significant for pollen grains that adhered to the stigma surface, germinated pollen grains, and the number of fertilized ovules. Non-additive genetic effects were important to the inheritance of these traits. Pollen viability and pollen-pistil interactions in cross- and self-pollination were also investigated to characterize pollen-stigma compatibility. Various events related to pollen tube growth dynamics indicated fertilization abnormalities. These abnormalities included the reticulated deposition of callose in the pollen tube, pollen tube growth cessation in a specific region of the stylet, and low pollen grain germination rate. Generally, pollen viability and stigma receptivity varied depending on the clone and flowering stage and were lost during flowering. This study provides novel insights into cassava reproduction that can assist in practical crossing and maximize the recombination of contrasting clones.


Subject(s)
Manihot/genetics , Ovule , Plant Breeding , Pollen Tube , Pollination , Polymorphism, Single Nucleotide
5.
Theor Appl Genet ; 132(1): 273-288, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30382311

ABSTRACT

KEY MESSAGE: Our study indicates that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids. Moreover, predicting hybrid phenotypes by combining additive-dominance effects with copy variants has the potential to be a viable predictive model. Non-additive effects resulting from the actions of multiple loci may influence trait variation in single-cross hybrids. In addition, complementation of allelic variation could be a valuable contributor to hybrid genetic variation, especially when crossing inbred lines with higher contents of copy gains. With this in mind, we aimed (1) to study the association between copy number variation (CNV) and hybrid phenotype, and (2) to compare the predictive ability (PA) of additive and additive-dominance genomic best linear unbiased prediction model when combined with the effects of CNV in two datasets of maize hybrids (USP and HELIX). In the USP dataset, we observed a significant negative phenotypic correlation of low magnitude between copy number loss and plant height, revealing a tendency that more copy losses lead to lower plants. In the same set, when CNV was combined with the additive plus dominance effects, the PA significantly increased only for plant height under low nitrogen. In this case, CNV effects explicitly capture relatedness between individuals and add extra information to the model. In the HELIX dataset, we observed a pronounced difference in PA between additive (0.50) and additive-dominance (0.71) models for predicting grain yield, suggesting a significant contribution of dominance. We conclude that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids, although the inclusion of CNVs into datasets does not return significant gains concerning PA.


Subject(s)
DNA Copy Number Variations , Hybridization, Genetic , Plant Breeding , Zea mays/genetics , Alleles , Genome, Plant , Genotype , Models, Genetic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL