Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Support Care Cancer ; 31(1): 63, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534177

ABSTRACT

In non-cancer populations, inorganic dietary nitrate (NO3-) supplementation is associated with enhanced cardiorespiratory function but remains untested in patients with a history of cancer. Therefore, this pilot study sought to determine if oral NO3- supplementation, as a supportive care strategy, increases left ventricular (LV) function and exercise performance in survivors of cancer treated with anticancer therapy while simultaneously evaluating the feasibility of the methods and procedures required for future large-scale randomized trials. Two cohorts of patients with a history of cancer treated with anticancer chemotherapy were recruited. Patients in cohort 1 (n = 7) completed a randomized, double-blind, crossover study with 7 days of NO3- or placebo (PL) supplementation, with echocardiography. Similarly, patients in cohort 2 (n = 6) received a single, acute dose of NO3- supplementation or PL. Pulmonary oxygen uptake (VO2), arterial blood pressure, and stroke volume were assessed during exercise. In cohort 1, NO3- improved LV strain rate in early filling (mean difference (MD) [95% CI]: - 0.3 1/s [- 0.6 to 0.06]; P = 0.04) and early mitral septal wall annular velocity (MD [95% CI]: 0.1 m/s [- 0.01 to - 0.001]; P = 0.02) compared to placebo. In cohort 2, NO3- decreased the O2 cost of low-intensity steady-state exercise (MD [95% CI]: - 0.5 ml/kg/min [- 0.9 to - 0.09]; P = 0.01). Resting and steady-state arterial blood pressure and stroke volume were not different between conditions. No differences between conditions for peak VO2 (MD [95% CI]: - 0.7 ml/kg/min [- 3.0 to 1.6]; P = 0.23) were observed. The findings from this pilot study warrant further investigation in larger clinical trials targeting the use of long-term inorganic dietary NO3- supplementation as a possible integrative supportive care strategy in patients following anticancer therapy.


Subject(s)
Cancer Survivors , Neoplasms , Humans , Nitrates , Pilot Projects , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Oxygen Consumption/physiology
2.
Cardiooncology ; 7(1): 18, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985593

ABSTRACT

PURPOSE: Cancer patients with a history of radiotherapy are at an increased risk of ischemic heart disease. Preclinical animal studies demonstrate markedly impaired acetylcholine (ACh)-mediated endothelium-dependent vasorelaxation within days to weeks post-irradiation, however, whether microvascular function is affected in the intact human circulation during cancer radiation therapy has yet to be determined. MATERIALS AND METHODS: Using laser-Doppler flowmetry, microvascular endothelium-dependent and independent responses were evaluated through iontophoresis of acetylcholine (ACh) (part 1, n = 7) and sodium nitroprusside (SNP) (part 2, n = 8), respectively, in women currently receiving unilateral chest adjuvant radiation therapy for breast cancer. Measurements were performed at the site of radiation treatment and at a contralateral control, non-radiated site. Cutaneous vascular conductance (CVC) was calculated by normalizing for mean arterial pressure. RESULTS AND CONCULSIONS: In part 1, patients received an average radiation dose of 2104 ± 236 cGy. A significantly lower peak ACh-mediated endothelium-dependent vasodilation was observed within the radiated microvasculature when compared to non-radiated (radiated: 532 ± 167%, non-radiated 1029 ± 263%; P = 0.02). In part 2, the average radiation dose received was 2251 ± 196 cGy. Iontophoresis of SNP elicited a similar peak endothelium-independent vasodilator response in radiated and non-radiated tissue (radiated: 179 ± 58%, non-radiated: 310 ± 158; P = 0.2). The time to 50% of the peak response for ACh and SNP was similar between radiated and non-radiated microvasculature (P < 0.05). These data provide evidence of early endothelium-dependent microvascular dysfunction in cancer patients currently receiving chest radiation and provide the scientific premise for future work evaluating coronary endothelial function and vasomotor reactivity using more detailed and invasive procedures.

3.
Appl Physiol Nutr Metab ; 45(6): 613-620, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31725319

ABSTRACT

High dietary sodium intake is a risk factor for arterial hypertension; given that the ability to overcome sympathetically mediated vasoconstriction (functional sympatholysis) is attenuated in individuals with hypertension, we investigated the cardiovascular responses to high salt (HS) intake in healthy humans. We hypothesized that a HS intake of 15 g/day for 7 days would attenuate functional sympatholysis and augment the blood pressure response to handgrip exercise (HGE). Thirteen participants (6 males, 7 females) underwent 2 individual days of testing. Beat-by-beat blood pressure and heart rate were recorded throughout the trial on the non-exercising limb. Forearm blood flow was derived from ultrasonography on the brachial artery of the exercising limb. Participants then underwent a flow-mediated dilation (FMD) test. Next, a submaximal HGE was performed for 7 min with lower body negative pressure initiated during minutes 5-7. A single spot urine sample revealed a significant increase in sodium excretion during the HS conditions (p < 0.01). FMD was reduced during the HS condition. Mean arterial pressure was significantly higher during HS intake. No alteration to functional sympatholysis was found between conditions (p > 0.05). In summary, HS intake increases blood pressure without impacting functional sympatholysis or blood pressure responsiveness during HGE. These findings indicate that brachial artery dysfunction precedes an inefficient functional sympatholysis. Novelty Functional sympatholysis was not impacted by 1 week of high sodium intake. High sodium intake augmented the rate pressure product during handgrip exercise in healthy humans.


Subject(s)
Blood Pressure/drug effects , Exercise/physiology , Hand Strength/physiology , Sodium, Dietary/pharmacology , Adolescent , Adult , Double-Blind Method , Female , Heart Rate/drug effects , Humans , Hypertension , Male , Young Adult
4.
Physiol Rep ; 6(23): e13933, 2018 12.
Article in English | MEDLINE | ID: mdl-30511427

ABSTRACT

Increasing the relaxation phase of the contraction-relaxation cycle will increase active skeletal muscle blood flow ( Q˙m ). However, it remains unknown if this increase in Q˙m alters the vasoconstriction responses in active skeletal muscle. This investigation determined if decreasing mechanical impedance would impact vasoconstriction of the active skeletal muscle. Eight healthy men performed rhythmic handgrip exercise under three different conditions; "low" duty cycle at 20% maximal voluntary contraction (MVC), "low" duty cycle at 15% MVC, and "high" duty cycle at 20% MVC. Relaxation time between low and high duty cycles were 2.4 sec versus 1.5 sec, respectively. During steady-state exercise lower body negative pressure (LBNP) was used to evoke vasoconstriction. Finger photoplethysmography and Doppler ultrasound derived diameters and velocities were used to measure blood pressure, forearm blood flow (FBF: mL min-1 ) and forearm vascular conductance (FVC: mL min-1  mmHg) throughout testing. The low duty cycle increased FBF and FVC versus the high duty cycle under steady-state conditions at 20% MVC (P < 0.01). The high duty cycle had the greatest attenuation in %ΔFVC (-1.9 ± 3.8%). The low duty cycle at 20% (-13.3 ± 1.4%) and 15% MVC (-13.1 ± 2.5%) had significantly greater vasoconstriction than the high duty cycle (both: P < 0.01) but were not different from one another (P = 0.99). When matched for work rate and metabolic rate ( V˙O2 ), the high duty cycle had greater functional sympatholysis than the low duty cycle. However, despite a lower V˙O2 , there was no difference in functional sympatholysis between the low duty cycle conditions. This may suggest that increases in Q˙m play a role in functional sympatholysis when mechanical compression is minimized.


Subject(s)
Hand Strength , Muscle Relaxation , Muscle, Skeletal/physiology , Physical Conditioning, Human/methods , Vasoconstriction , Adult , Basal Metabolism , Humans , Isometric Contraction , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Oxygen Consumption , Random Allocation
5.
J Appl Physiol (1985) ; 125(1): 198-204, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29565770

ABSTRACT

Chemotherapy is associated with acute and long-term cardiotoxicity. To date, risk assessment has primarily focused on the heart; however, recent findings suggest that vascular and autonomic function may also be compromised. Whether this occurs during chemotherapy treatment remains unknown. Therefore, the present study evaluated carotid artery stiffness, cardiovagal baroreflex sensitivity (cBRS), and heart rate variability (HRV) in cancer patients currently being treated with adjuvant chemotherapy. Eleven current cancer patients receiving adjuvant chemotherapy and 11 matched (1:1) controls were studied. Carotid artery stiffness was assessed via two-dimensional ultrasonography. cBRS was assessed from the spontaneous changes in beat-to-beat time series of R-R interval and systolic blood pressure via the cross-correlation technique. HRV was assessed using the standard deviation of R-R intervals (SDNN) and low (LF) and high (HF) power frequencies. Carotid artery ß-stiffness was significantly higher in the cancer patients compared with control participants (8.0 ± 0.8 vs. 6.3 ± 0.6 U, respectively; P = 0.02). cBRS was lower in the cancer patients compared with controls (4.3 ± 0.7 vs. 10.7 ± 1.9 ms/mmHg, respectively; P = 0.01), and all indices of HRV were lower in the cancer patients (SDNN, P = 0.02; LF, P = 0.01; HF, P = 0.02). There was no significant correlation between ß-stiffness and cBRS ( P = 0.4). However, LF power was significantly correlated with cBRS (r = 0.66, P < 0.001). Compared with matched healthy controls, cancer patients undergoing chemotherapy demonstrated a significantly higher arterial stiffness and lower cBRS. The previously reported adverse effects of chemotherapy on the heart appear to also influence other aspects of cardiovascular health. NEW & NOTEWORTHY Patients treated with anticancer chemotherapy exhibit an impaired baroreflex control of arterial blood pressure and increased arterial stiffness. These findings hold significant value, in particular as part of a risk-stratification strategy in current cancer patients receiving chemotherapy. This is the first investigation, to our knowledge, to demonstrate an attenuated spontaneous baroreflex control of arterial blood pressure in cancer patients currently undergoing chemotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Autonomic Nervous System/physiopathology , Carotid Arteries/physiopathology , Neoplasms/drug therapy , Neoplasms/physiopathology , Baroreflex/physiology , Blood Pressure/physiology , Case-Control Studies , Cross-Sectional Studies , Female , Heart/physiopathology , Heart Rate/physiology , Humans , Male , Middle Aged , Vascular Stiffness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...