Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(12): 4345-4352, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-34163697

ABSTRACT

The development of tailored materials for specific applications is an active field of research in chemistry, material science and drug discovery. The number of possible molecules obtainable from a set of atomic species grow exponentially with the size of the system, limiting the efficiency of classical sampling algorithms. On the other hand, quantum computers can provide an efficient solution to the sampling of the chemical compound space for the optimization of a given molecular property. In this work, we propose a quantum algorithm for addressing the material design problem with a favourable scaling. The core of this approach is the representation of the space of candidate structures as a linear superposition of all possible atomic compositions. The corresponding 'alchemical' Hamiltonian drives the optimization in both the atomic and electronic spaces leading to the selection of the best fitting molecule, which optimizes a given property of the system, e.g., the interaction with an external potential as in drug design. The quantum advantage resides in the efficient calculation of the electronic structure properties together with the sampling of the exponentially large chemical compound space. We demonstrate both in simulations and with IBM Quantum hardware the efficiency of our scheme and highlight the results in a few test cases. This preliminary study can serve as a basis for the development of further material design quantum algorithms for near-term quantum computers.

2.
J Chem Theory Comput ; 17(7): 3946-3954, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34077220

ABSTRACT

We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers, named nonunitary Variational Quantum Eigensolver (nu-VQE), in which a nonunitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wave function ansatz. In the present work, as nonunitary operator, we use the Jastrow factor, inspired from classical Quantum Monte Carlo techniques for simulation of strongly correlated electrons. The method is applied to prototypical molecular Hamiltonians for which we obtain accurate ground-state energies with shallower circuits, at the cost of an increased number of measurements. Finally, we also show that this method achieves an important error mitigation effect that drastically improves the quality of the results for VQE optimizations on today's noisy quantum computers. The absolute error in the calculated energy within our scheme is 1 order of magnitude smaller than the corresponding result using traditional VQE methods, with the same circuit depth.

3.
J Chem Phys ; 154(11): 114105, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33752343

ABSTRACT

In the near future, material and drug design may be aided by quantum computer assisted simulations. These have the potential to target chemical systems intractable by the most powerful classical computers. However, the resources offered by contemporary quantum computers are still limited, restricting the simulations to very simple molecules. In order to rapidly scale up to more interesting molecular systems, we propose the embedding of the quantum electronic structure calculation into a classically computed environment obtained at the Hartree-Fock (HF) or density functional theory (DFT) level of theory. This result is achieved by constructing an effective Hamiltonian that incorporates a mean field potential describing the action of the inactive electrons on a selected Active Space (AS). The ground state of the AS Hamiltonian is then determined by means of the variational quantum eigensolver algorithm. We show that with the proposed HF and DFT embedding schemes, we can obtain significant energy corrections to the reference HF and DFT calculations for a number of simple molecules in their strongly correlated limit (the dissociation regime) as well as for systems of the size of the oxirane molecule.

4.
J Chem Phys ; 152(12): 124107, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32241157

ABSTRACT

The Coupled Cluster (CC) method is used to compute the electronic correlation energy in atoms and molecules and often leads to highly accurate results. However, due to its single-reference nature, standard CC in its projected form fails to describe quantum states characterized by strong electronic correlations and multi-reference projective methods become necessary. On the other hand, quantum algorithms for the solution of many-electron problems have also emerged recently. The quantum unitary variant of CC (UCC) with singles and doubles (q-UCCSD) is a popular wavefunction Ansatz for the variational quantum eigensolver algorithm. The variational nature of this approach can lead to significant advantages compared to its classical equivalent in the projected form, in particular, for the description of strong electronic correlation. However, due to the large number of gate operations required in q-UCCSD, approximations need to be introduced in order to make this approach implementable in a state-of-the-art quantum computer. In this work, we evaluate several variants of the standard q-UCCSD Ansatz in which only a subset of excitations is included. In particular, we investigate the singlet and pair q-UCCD approaches combined with orbital optimization. We show that these approaches can capture the dissociation/distortion profiles of challenging systems, such as H4, H2O, and N2 molecules, as well as the one-dimensional periodic Fermi-Hubbard chain. These results promote the future use of q-UCC methods for the solution of challenging electronic structure problems in quantum chemistry.

5.
Phys Rev Lett ; 123(13): 130501, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697518

ABSTRACT

We introduce a quantum Monte Carlo inspired reweighting scheme to accurately compute energies from optimally short quantum circuits. This effectively hybrid quantum-classical approach features both entanglement provided by a short quantum circuit, and the presence of an effective nonunitary operator at the same time. The functional form of this projector is borrowed from classical computation and is able to filter out high-energy components generated by a suboptimal variational quantum heuristic Ansatz. The accuracy of this approach is demonstrated numerically in finding energies of entangled ground states of many-body lattice models. We demonstrate a practical implementation on IBM quantum hardware up to an 8-qubit circuit.

SELECTION OF CITATIONS
SEARCH DETAIL
...