Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Cell Death Dis ; 14(6): 355, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296099

ABSTRACT

Genetic mutations in the Xylt1 gene are associated with Desbuquois dysplasia type II syndrome characterized by sever prenatal and postnatal short stature. However, the specific role of XylT-I in the growth plate is not completely understood. Here, we show that XylT-I is expressed and critical for the synthesis of proteoglycans in resting and proliferative but not in hypertrophic chondrocytes in the growth plate. We found that loss of XylT-I induces hypertrophic phenotype-like of chondrocytes associated with reduced interterritorial matrix. Mechanistically, deletion of XylT-I impairs the synthesis of long glycosaminoglycan chains leading to the formation of proteoglycans with shorter glycosaminoglycan chains. Histological and Second Harmonic Generation microscopy analysis revealed that deletion of XylT-I accelerated chondrocyte maturation and prevents chondrocytes columnar organization and arrangement in parallel of collagen fibers in the growth plate, suggesting that XylT-I controls chondrocyte maturation and matrix organization. Intriguingly, loss of XylT-I induced at embryonic stage E18.5 the migration of progenitor cells from the perichondrium next to the groove of Ranvier into the central part of epiphysis of E18.5 embryos. These cells characterized by higher expression of glycosaminoglycans exhibit circular organization then undergo hypertrophy and death creating a circular structure at the secondary ossification center location. Our study revealed an uncovered role of XylT-I in the synthesis of proteoglycans and provides evidence that the structure of glycosaminoglycan chains of proteoglycans controls chondrocyte maturation and matrix organization.


Subject(s)
Chondrocytes , Proteoglycans , Humans , Chondrocytes/metabolism , Proteoglycans/metabolism , Growth Plate , Glycosaminoglycans , Collagen/metabolism , Hypertrophy/metabolism , UDP Xylose-Protein Xylosyltransferase
2.
Front Cell Dev Biol ; 10: 903953, 2022.
Article in English | MEDLINE | ID: mdl-35693943

ABSTRACT

Glycosylation is a ubiquitous and universal cellular process in all domains of life. In eukaryotes, many glycosylation pathways occur simultaneously onto proteins and lipids for generating a complex diversity of glycan structures. In humans, severe genetic diseases called Congenital Disorders of Glycosylation (CDG), resulting from glycosylation defects, demonstrate the functional relevance of these processes. No real cure exists so far, but oral administration of specific monosaccharides to bypass the metabolic defects has been used in few CDG, then constituting the simplest and safest treatments. Oral D-Galactose (Gal) therapy was seen as a promising tailored treatment for specific CDG and peculiarly for TMEM165-CDG patients. TMEM165 deficiency not only affects the N-glycosylation process but all the other Golgi-related glycosylation types, then contributing to the singularity of this defect. Our previous results established a link between TMEM165 deficiency and altered Golgi manganese (Mn2+) homeostasis. Besides the fascinating power of MnCl2 supplementation to rescue N-glycosylation in TMEM165-deficient cells, D-Gal supplementation has also been shown to be promising in suppressing the observed N-glycosylation defects. Its effect on the other Golgi glycosylation types, most especially O-glycosylation and glycosaminoglycan (GAG) synthesis, was however unknown. In the present study, we demonstrate the differential impact of D-Gal or MnCl2 supplementation effects on the Golgi glycosylation defects caused by TMEM165 deficiency. Whereas MnCl2 supplementation unambiguously fully rescues the N- and O-linked as well as GAG glycosylations in TMEM165-deficient cells, D-Gal supplementation only rescues the N-linked glycosylation, without any effects on the other Golgi-related glycosylation types. According to these results, we would recommend the use of MnCl2 for TMEM165-CDG therapy.

3.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930890

ABSTRACT

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Subject(s)
Antiporters/deficiency , Antiporters/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/metabolism , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Chondroitin Sulfates/biosynthesis , Dwarfism/metabolism , Heparan Sulfate Proteoglycans/biosynthesis , Signal Transduction/genetics , Animals , Antiporters/genetics , Case-Control Studies , Cation Transport Proteins/genetics , Cell Line, Tumor , Chondrogenesis/genetics , Dwarfism/pathology , Fibroblasts/metabolism , Gene Knockout Techniques/methods , Glycosylation , HEK293 Cells , Humans , Hypertrophy/metabolism , Mice , Transfection
4.
Oncotarget ; 10(34): 3166-3182, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31139331

ABSTRACT

Chondrosarcoma is a highly agressive cancer with currently no effective therapies when unresectable or metastasized, thus the outcome remains poor. High-grade chordrosarcomas are resistant to conventional chemotherapy and radiotherapy and surgical resection remains the only treatment for the majority of chondrosarcomas. Constitutive activation of receptor tyrosine kinases has been shown to be important for malignant transformation and tumour proliferation. Here, we investigated the activation status of EGFR in chondrosarcoma tumor biopsies and cell lines. We found that EGFR is activated in grade II and grade III chondrosarcoma tumors but not in grade I tumors, suggesting a role in tumor progression. Interestingly, we showed that EGFR is activated through an autocrine loop and that inhibition of the EGFR by the TKI, tyrphostin AG1478 or EGFR neutralizing antibodies strongly reduced activation of oncogenic ERK1/2 and mTOR/AKT downstream pathways. Importantly, inhibition of EGFR profoundly reduces cell proliferation and migration, inhibits the expression of MMP13 and MMP3 and enhances cell death. Taken together, these data support the blocking of EGFR as new potential treatment for high-grade chondrosarcoma tumors.

5.
Cell Death Differ ; 25(8): 1442-1456, 2018 08.
Article in English | MEDLINE | ID: mdl-29352270

ABSTRACT

Dysregulation of Wnt signaling has been implicated in developmental defects and in the pathogenesis of many diseases such as osteoarthritis; however, the underlying mechanisms are poorly understood. Here, we report that non-canonical Wnt signaling induced loss of chondrocyte phenotype through activation of Fz-6/DVL-2/SYND4/CaMKIIα/B-raf/ERK1/2 cascade. We show that in response to Wnt-3a, Frizzled 6 (Fz-6) triggers the docking of CaMKIIα to syndecan 4 (SYND4) and that of B-raf to DVL-2, leading to the phosphorylation of B-raf by CaMKIIα and activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling, which leads to chondrocyte de-differentiation. We demonstrate that CaMKIIα associates and phosphorylates B-raf in vitro and in vivo. Our study reveals the mechanism by which non-canonical Wnt activates ERK1/2 signaling that induces loss of chondrocyte phenotype, and demonstrates a direct functional relationship between CaMKIIα and B-raf during chondrocyte de-differentiation. The identification of Fz-6, SYND4, and B-raf as novel physiological regulators of chondrocyte phenotype may provide new potential anti-osteoarthritic targets.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Dedifferentiation , Dishevelled Proteins/metabolism , Frizzled Receptors/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Syndecan-4/metabolism , Wnt Proteins/metabolism , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Dishevelled Proteins/antagonists & inhibitors , Dishevelled Proteins/genetics , Frizzled Receptors/antagonists & inhibitors , Frizzled Receptors/genetics , Humans , MAP Kinase Signaling System , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phenotype , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics , RNA Interference , RNA, Small Interfering/metabolism , Syndecan-4/antagonists & inhibitors , Syndecan-4/genetics , beta Catenin/antagonists & inhibitors , beta Catenin/genetics , beta Catenin/metabolism
6.
PLoS One ; 11(1): e0146499, 2016.
Article in English | MEDLINE | ID: mdl-26751072

ABSTRACT

Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-ß1 (TGF-ß1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-ß1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-ß-D-xylopyranoside, a competitive inhibitor of ß4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-ß1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-ß1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of ß4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of ß4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.


Subject(s)
Hymecromone/analogs & derivatives , Lung/physiopathology , Proteoglycans/biosynthesis , Pulmonary Fibrosis/physiopathology , Transforming Growth Factor beta1/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Cytokines/metabolism , Dermatan Sulfate/chemistry , Enzyme Inhibitors/chemistry , Extracellular Matrix/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Galactosyltransferases/antagonists & inhibitors , Glycosides/chemistry , Heparin/analogs & derivatives , Heparin/biosynthesis , Humans , Hymecromone/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Lung/cytology , Lung/metabolism , N-Acetyllactosamine Synthase/antagonists & inhibitors , Phenotype , Pulmonary Fibrosis/drug therapy , RNA, Small Interfering/metabolism , Rats , Real-Time Polymerase Chain Reaction , Signal Transduction
7.
J Biol Chem ; 288(3): 1774-84, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23223231

ABSTRACT

Xylosyltransferase I (XT-I) is an essential enzyme of proteoglycan (PG) biosynthesis pathway catalyzing the initial and rate-limiting step in glycosaminoglycan chain assembly. It plays a critical role in the regulation of PG synthesis in cartilage; however, little is known about underlying mechanism. Here, we provide evidence that, in human primary chondrocytes, IL-1ß regulates XT-I gene expression into an early phase of induction and a late phase of down-regulation. Based on promoter deletions, the region up to -850 bp was defined as a major element of XT-I gene displaying both constitutive and IL-1ß-regulated promoter activity. Point mutation and signaling analyses revealed that IL-1ß-induced promoter activity is achieved through AP-1 response elements and mediated by SAP/JNK and p38 signaling pathways. Transactivation and chromatin immunoprecipitation assays indicated that AP-1 is a potent transactivator of XT-I promoter and that IL-1ß-induced activity is mediated through increased recruitment of AP-1 to the promoter. Finally, we show that Sp3 is a repressor of XT-I promoter and bring evidence that the repressive effect of IL-1ß during the late phase is mediated through Sp3 recruitment to the promoter. This suggests that modulation of Sp3 in cartilage could prevent IL-1ß inhibition of PG synthesis and limit tissue degradation.


Subject(s)
Gene Expression Regulation/drug effects , Pentosyltransferases/genetics , Proteoglycans/biosynthesis , Sp3 Transcription Factor/genetics , Transcription Factor AP-1/genetics , Aged , Base Sequence , Binding Sites , Cartilage/cytology , Cartilage/drug effects , Cartilage/metabolism , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Humans , Interleukin-1beta/pharmacology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Middle Aged , Molecular Sequence Data , Mutation , Pentosyltransferases/metabolism , Primary Cell Culture , Promoter Regions, Genetic , Protein Binding , Signal Transduction/drug effects , Sp3 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , UDP Xylose-Protein Xylosyltransferase
8.
PLoS One ; 7(3): e34020, 2012.
Article in English | MEDLINE | ID: mdl-22479506

ABSTRACT

Loss of glycosaminoglycan (GAG) chains of proteoglycans (PGs) is an early event of osteoarthritis (OA) resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I) that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as "normal", "late-stage" or adjacent to "late-stage". The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically "normal" unaffected regions, while decreased in "late-stage" OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage "next to lesion" while a decrease in the "late-stage" OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1ß and up-regulated by TGF-ß1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1ß receptor (IL-1R1) was down-regulated whereas that of TGF-ß1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA.


Subject(s)
Gene Expression Regulation, Enzymologic , Glycosaminoglycans/metabolism , Osteoarthritis/metabolism , Pentosyltransferases/physiology , Receptors, Interleukin-1 Type I/metabolism , Aged , Cartilage, Articular/metabolism , Disease Progression , Femur/pathology , Gene Expression Profiling , Humans , Interleukin-1beta/metabolism , Middle Aged , Models, Biological , Transforming Growth Factor beta1/metabolism , UDP Xylose-Protein Xylosyltransferase
9.
FASEB J ; 23(3): 813-22, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19001053

ABSTRACT

Osteoarthritis and rheumatoid arthritis are characterized by loss of proteoglycans (PGs) and their glycosaminoglycan (GAG) chains that are essential for cartilage function. Here, we investigated the role of glycosyltransferases (GTs) responsible for PG-GAG chain assembly during joint cartilage destruction and repair processes. At various times after antigen-induced arthritis (AIA) and papain-induced cartilage repair in rats, PG synthesis and deposition, expression of GTs, and GAG chain composition were analyzed. Our data showed that expression of the GT xylosyltransferase I (XT-I) gene initiating PG-GAG chain synthesis was significantly reduced in AIA rat cartilage and was associated with a decrease in PG synthesis. Interestingly, interleukin-1beta, the main proinflammatory cytokine incriminated in joint diseases, down-regulated the XT-I gene expression with a concomitant decrease in PG synthesis in rat cartilage explants ex vivo. However, cartilage from papain-injected rat knees showed up-regulation of XT-I gene expression and increased PG synthesis at early stages of cartilage repair, a process associated with up-regulation of TGF-beta1 gene expression and mediated by p38 mitogen-activated protein kinase activation. Consistently, silencing of XT-I expression by intraarticular injection of XT-I shRNA in rat knees prevented cartilage repair by decreasing PG synthesis and content. These findings show that GTs play a key role in the loss of PG-GAGs in joint diseases and identify novel targets for stimulating cartilage repair.


Subject(s)
Cartilage/metabolism , Gene Expression Regulation, Enzymologic/physiology , Glycosaminoglycans/biosynthesis , Pentosyltransferases/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Animals , Arthritis/chemically induced , Arthritis/metabolism , Arthritis/pathology , Cartilage/drug effects , Cartilage/pathology , Gene Silencing , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Kinetics , Male , Papain , Pentosyltransferases/genetics , Proteoglycans/biosynthesis , Rats , Rats, Wistar , p38 Mitogen-Activated Protein Kinases/metabolism , UDP Xylose-Protein Xylosyltransferase
10.
J Biol Chem ; 282(50): 36514-24, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-17956868

ABSTRACT

The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.


Subject(s)
Aspartic Acid/chemistry , Glucuronosyltransferase/chemistry , Histidine/chemistry , Aspartic Acid/genetics , Aspartic Acid/metabolism , Catalysis , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Glucuronosyltransferase/genetics , Histidine/genetics , Histidine/metabolism , Humans , Mutagenesis, Site-Directed , Phenols/chemistry , Phenols/metabolism , Substrate Specificity/genetics , Xenobiotics/chemistry
11.
FEBS J ; 274(5): 1256-64, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17263731

ABSTRACT

The human UDP-glucuronosyltransferase (UGT) isoforms UGT2B4 and UGT2B7 play a major role in the detoxification of bile acids, steroids and phenols. These two isoforms present distinct but overlapping substrate specificity, sharing common substrates such as the bile acid hyodeoxycholic acid (HDCA) and catechol-estrogens. Here, we show that in UGT2B4, substitution of phenylalanine 33 by leucine suppressed the activity towards HDCA, and impaired the glucuronidation of several substrates, including 4-hydroxyestrone and 17-epiestriol. On the other hand, the substrate specificity of the mutant UGT2B4F33Y, in which phenylalanine was replaced by tyrosine, as found at position 33 of UGT2B7, was similar to wild-type UGT2B4. In the case of UGT2B7, replacement of tyrosine 33 by leucine strongly reduced the activity towards all the tested substrates, with the exception of 17-epiestriol. In contrast, mutation of tyrosine 33 by phenylalanine exhibited similar or even somewhat higher activities than wild-type UGT2B7. Hence, the results strongly indicated that the presence of an aromatic residue at position 33 is important for the activity and substrate specificity of both UGT2B4 and UGT2B7.


Subject(s)
Amino Acids, Aromatic/chemistry , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Glucuronosyltransferase/genetics , Humans , Isoenzymes/genetics , Kinetics , Leucine/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenylalanine/metabolism , Sequence Homology, Amino Acid , Spodoptera/cytology , Spodoptera/metabolism , Substrate Specificity , Tyrosine/metabolism
12.
FASEB J ; 20(10): 1692-4, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16807373

ABSTRACT

The importance of heparan- and chondroitin-sulfate proteoglycans in physiological and pathological processes led to the investigation of the regulation of beta1,3-glucuronosyltransferase I (GlcAT-I), responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide, a key step prior to polymerization of chondroitin- and heparan-sulfate chains. We have cloned and functionally characterized GlcAT-I 5'-flanking regulatory region. Mutation analysis and electrophoretic mobility shift assays demonstrated the importance of Sp1 motif located at -65/-56 position in promoter activity. Furthermore, we found that elevation of intracellular calcium concentration by the calcium ionophore ionomycin stimulated GlcAT-I gene expression as well as glycosaminoglycan chain synthesis in HeLa cells. Bisanthracycline, an anti-Sp1 compound, inhibited GlcAT-I basal promoter activity and suppressed ionomycin induction, suggesting the importance of Sp1 in calcium induction of GlcAT-I gene expression. Nuclear protein extracts from ionomycin-induced cells exhibited an increased DNA binding of Sp1 factor to the consensus sequence at position -65/-56. Signaling pathway analysis and MEK inhibition studies revealed the important role of p42/p44 MAPK in the stimulation of GlcAT-I promoter activity by ionomycin. The present study identifies, for the first time, GlcAT-I as a target of calcium-dependent signaling pathway and evidences the critical role of Sp1 transcription factor in the activation of GlcAT-I expression.


Subject(s)
Calcium/physiology , Gene Expression Regulation , Glucuronosyltransferase/genetics , Sp1 Transcription Factor/metabolism , Binding Sites , Chondroitin Sulfates/metabolism , DNA/metabolism , HeLa Cells , Heparitin Sulfate/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutagenesis, Site-Directed , Promoter Regions, Genetic , Protein Binding , Proteoglycans/biosynthesis , Signal Transduction
13.
FEBS J ; 272(4): 1063-71, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15691338

ABSTRACT

Human UDP-glucuronosyltransferase 1A (UGT1A) isoforms are endoplasmic reticulum (ER)-resident type I membrane proteins responsible for the detoxification of a broad range of toxic phenolic compounds. These proteins contain a C-terminal stop transfer sequence with a transmembrane domain (TMD), which anchors the protein into the membrane, followed by a short cytosolic tail (CT). Here, we investigated the mechanism of ER residency of UGT1A mediated by the stop transfer sequence by analysing the subcellular localization and sensitivity to endoglycosidases of chimeric proteins formed by fusion of UGT1A stop transfer sequence (TMD/CT) with the ectodomain of the plasma membrane CD4 reporter protein. We showed that the stop transfer sequence, when attached to C-terminus of the CD4 ectodomain was able to prevent it from being transported to the cell surface. The protein was retained in the ER indicating that this sequence functions as an ER localization signal. Furthermore, we demonstrated that ER localization conferred by the stop transfer sequence was mediated in part by the KSKTH retrieval signal located on the CT. Interestingly, our data indicated that UGT1A TMD alone was sufficient to retain the protein in ER without recycling from Golgi compartment, and brought evidence that organelle localization conferred by UGT1A TMD was determined by the length of its hydrophobic core. We conclude that both retrieval mechanism and static retention mediated by the stop transfer sequence contribute to ER residency of UGT1A proteins.


Subject(s)
Endoplasmic Reticulum/metabolism , Glucuronosyltransferase/metabolism , Protein Sorting Signals/physiology , Dipeptides/metabolism , Fluorescent Antibody Technique , HeLa Cells , Humans , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL