Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters











Publication year range
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794218

ABSTRACT

Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein-protein and drug-protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases.

2.
Mol Neurobiol ; 60(8): 4842-4854, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37184765

ABSTRACT

Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.


Subject(s)
Interferon Type I , Palmitic Acid , Humans , Palmitic Acid/toxicity , Antiviral Agents/pharmacology , Astrocytes/metabolism , Interferon Type I/metabolism , Interferon Type I/pharmacology , Fatty Acids/metabolism , Cholesterol/metabolism
3.
Pharmaceutics ; 14(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145662

ABSTRACT

Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time due to their multifactorial character. Among these pathologies, Alzheimer's disease (AD) is of special relevance, and despite the existence of approved drugs for its treatment, there is still no efficient pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many physiological pathways involved, the most effective approach to modulate more than one of them in a relevant manner and without undesirable consequences is through polypharmacology. In this field, there has been significant progress in recent years in terms of pharmacoinformatics tools that allow the discovery of bioactive molecules with polypharmacological profiles without the need to spend a long time and excessive resources on complex experimental designs, making the drug design and development pipeline more efficient. In this review, we present from different perspectives how pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence and new trends, as well as different databases and software with their main results, emphasizing the importance of coupling wet and dry approaches in drug design and development processes.

4.
Biomolecules ; 12(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35883542

ABSTRACT

The association between neurodegenerative diseases (NDs) and obesity has been well studied in recent years. Obesity is a syndrome of multifactorial etiology characterized by an excessive accumulation and release of fatty acids (FA) in adipose and non-adipose tissue. An excess of FA generates a metabolic condition known as lipotoxicity, which triggers pathological cellular and molecular responses, causing dysregulation of homeostasis and a decrease in cell viability. This condition is a hallmark of NDs, and astrocytes are particularly sensitive to it, given their crucial role in energy production and oxidative stress management in the brain. However, analyzing cellular mechanisms associated with these conditions represents a challenge. In this regard, metabolomics is an approach that allows biochemical analysis from the comprehensive perspective of cell physiology. This technique allows cellular metabolic profiles to be determined in different biological contexts, such as those of NDs and specific metabolic insults, including lipotoxicity. Since data provided by metabolomics can be complex and difficult to interpret, alternative data analysis techniques such as machine learning (ML) have grown exponentially in areas related to omics data. Here, we developed an ML model yielding a 93% area under the receiving operating characteristic (ROC) curve, with sensibility and specificity values of 80% and 93%, respectively. This study aimed to analyze the metabolomic profiles of human astrocytes under lipotoxic conditions to provide powerful insights, such as potential biomarkers for scenarios of lipotoxicity induced by palmitic acid (PA). In this work, we propose that dysregulation in seleno-amino acid metabolism, urea cycle, and glutamate metabolism pathways are major triggers in astrocyte lipotoxic scenarios, while increased metabolites such as alanine, adenosine, and glutamate are suggested as potential biomarkers, which, to our knowledge, have not been identified in human astrocytes and are proposed as candidates for further research and validation.


Subject(s)
Astrocytes , Glutamic Acid , Astrocytes/metabolism , Biomarkers/metabolism , Glutamic Acid/metabolism , Humans , Machine Learning , Obesity/metabolism
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269616

ABSTRACT

Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty acids in non-adipose tissues which involves a series of pathological responses triggered after chronic exposure to high levels of fatty acids, severely detrimental to cellular homeostasis and viability. In brain, lipotoxicity affects both neurons and other cell types, notably astrocytes, leading to neurodegenerative processes, such as Alzheimer (AD) and Parkinson diseases (PD). In this study, we performed for the first time, a whole lipidomic characterization of Normal Human Astrocytes cultures exposed to toxic concentrations of palmitic acid and the protective compound tibolone, to establish and identify the set of potential metabolites that are modulated under these experimental treatments. The study covered 3843 features involved in the exo- and endo-metabolome extracts obtained from astrocytes with the mentioned treatments. Through multivariate statistical analysis such as PCA (principal component analysis), partial least squares (PLS-DA), clustering analysis, and machine learning enrichment analysis, it was possible to determine the specific metabolites that were affected by palmitic acid insult, such as phosphoethanolamines, phosphoserines phosphocholines and glycerophosphocholines, with their respective metabolic pathways impact. Moreover, our results suggest the importance of tibolone in the generation of neuroprotective metabolites by astrocytes and may be relevant to the development of neurodegenerative processes.


Subject(s)
Lipidomics , Palmitic Acid , Astrocytes/metabolism , Glycerophospholipids/metabolism , Humans , Metabolomics , Norpregnenes , Palmitic Acid/metabolism , Palmitic Acid/toxicity
6.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269720

ABSTRACT

One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.


Subject(s)
Fatty Acids , Neurodegenerative Diseases , Endoplasmic Reticulum Stress , Fatty Acids/metabolism , Humans , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/therapy , Oleic Acid/pharmacology , Palmitic Acid/pharmacology
8.
Biomolecules ; 11(8)2021 07 31.
Article in English | MEDLINE | ID: mdl-34439798

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction and death of brain cells population. As the early manifestations of NDs are similar, their symptoms are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative disorder a priority. Several investigations have revealed the importance of microRNAs and long non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well as its dysregulation involved in many types of neurological diseases. Therefore, the expression pattern of these molecules in the different NDs have gained significant attention to improve the diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization method should be applied to extract the most relevant information. Hence, machine learning is considered as an important tool for this purpose since it can classify expression profiles of non-coding RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its different methods, and its meaningful application in the diagnosis of NDs from the dysregulated non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the description of different investigations that showed an accuracy between 85% to 95% in the detection of the disease with this tool. All of these denote that artificial intelligence could be an excellent alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based on non-coding RNAs.


Subject(s)
Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/genetics , Machine Learning , MicroRNAs/genetics , Parkinson Disease/genetics , RNA, Long Noncoding/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Computational Biology/methods , Databases, Genetic , Gene Expression Regulation , Humans , Information Dissemination , Internet , MicroRNAs/classification , MicroRNAs/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , RNA, Long Noncoding/classification , RNA, Long Noncoding/metabolism , Signal Transduction , Software
9.
Front Pharmacol ; 12: 644103, 2021.
Article in English | MEDLINE | ID: mdl-34093183

ABSTRACT

In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.

10.
Adv Exp Med Biol ; 1308: 589-599, 2021.
Article in English | MEDLINE | ID: mdl-33861460

ABSTRACT

Fatty Acid Binding-Protein 5 (FABP5) is a cytoplasmic protein, which binds long-chain fatty acids and other hydrophobic ligands. This protein is implicated in several physiological processes including mitochondrial ß-oxidation and transport of fatty acids, membrane phospholipid synthesis, lipid metabolism, inflammation and pain. In the present study, we used molecular docking tools to determine the possible interaction of FABP5 with six selected compounds retrieved form Drugbank. Our results showed that FABP5 binding pocket included 31 polar and non-polar amino acids, and these residues may be related to phosphorylation, acetylation, ubiquitylation, and mono-methylation. Docking results showed that the most energetically favorable compounds are NADH (-9.12 kcal/mol), 5'-O-({[(Phosphonatooxy)phosphinato]oxy}phosphinato)adenosine (-8.62 kcal/mol), lutein (-8.25 kcal/mol), (2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}benzoyl)amino]pentanedioate (-7.17 kcal/mol), Pteroyl-L-glutamate (-6.86 kcal/mol) and (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene-1,3,25-triol (-6.79 kcal/mol). Common interacting residues of FABP5 with nutraceuticals included SER16, LYS24, LYS34, LYS40 and LYS17. Further, we used the SwissADME server to determine the physicochemical and pharmacokinetic characteristics and to predict the ADME parameters of the selected nutraceuticals after molecular analysis by docking with the FABP5 protein. Amongst all compounds, pteroyl-L-glutamate is the only one meeting the Lipinski's rule of five criteria, demonstrating its potential pharmacological use. Finally, our results also suggest the importance of FABP5 in mediating the anti-inflammatory activity of the nutraceutical compounds.


Subject(s)
Anti-Inflammatory Agents , Fatty Acid-Binding Proteins , Dietary Supplements , Fatty Acid-Binding Proteins/genetics , Ligands , Molecular Docking Simulation
11.
Front Neuroendocrinol ; 61: 100899, 2021 04.
Article in English | MEDLINE | ID: mdl-33450200

ABSTRACT

Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimers, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.


Subject(s)
Lipid Metabolism , Lipidomics , Brain , Humans , Lipids , Machine Learning
12.
Front Neuroinform ; 14: 35, 2020.
Article in English | MEDLINE | ID: mdl-32848690

ABSTRACT

The growing importance of astrocytes in the field of neuroscience has led to a greater number of computational models devoted to the study of astrocytic functions and their metabolic interactions with neurons. The modeling of these interactions demands a combined understanding of brain physiology and the development of computational frameworks based on genomic-scale reconstructions, system biology, and dynamic models. These computational approaches have helped to highlight the neuroprotective mechanisms triggered by astrocytes and other glial cells, both under normal conditions and during neurodegenerative processes. In the present review, we evaluate some of the most relevant models of astrocyte metabolism, including genome-scale reconstructions and astrocyte-neuron interactions developed in the last few years. Additionally, we discuss novel strategies from the multi-omics perspective and computational models of other glial cell types that will increase our knowledge in brain metabolism and its association with neurodegenerative diseases.

13.
Neurotox Res ; 38(3): 585-595, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32638213

ABSTRACT

Lipotoxicity is a pathological condition resulting from the excessive accumulation of fatty acids, like palmitic acid (PA), within the cell. This pathological phenomenon induces deleterious metabolic changes in cells and is associated with neurodegenerative diseases, dyslipidemia, and obesity. Recent evidence has demonstrated that tibolone, a synthetic steroid, protects cellular damage through various mechanisms; but its underlying actions upon lipotoxic damage are unknown. In this study, we assessed the effects of tibolone administration on normal human astrocytes subject to supraphysiological levels of palmitic acid as a model to induce cytotoxicity. Our results demonstrated that tibolone attenuated lipotoxic damage of PA in normal human astrocytes by reducing PI uptake in 53%, prevented cardiolipin loss by 17%, reduced fragmented/condensed nuclei by 50.81% and attenuated the production of superoxide ions by around 20%. In conclusion, these data suggest that protective effects of tibolone against lipotoxicity may be mediated, in part, through modulation of the different cellular mechanisms of astrocytes.


Subject(s)
Astrocytes/drug effects , Neurons/drug effects , Norpregnenes/pharmacology , Palmitic Acid/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Palmitic Acid/metabolism
14.
Trends Endocrinol Metab ; 31(10): 742-759, 2020 10.
Article in English | MEDLINE | ID: mdl-32507541

ABSTRACT

Tibolone (TIB), a selective tissue estrogenic activity regulator (STEAR) in clinical use by postmenopausal women, activates hormonal receptors in a tissue-specific manner. Estrogenic activity is present mostly in the brain, vagina, and bone, while the inactive forms predominate in the endometrium and breast. Conflicting literature on TIB's actions has been observed. While it has benefits for vasomotor symptoms, bone demineralization, and sexual health, a higher relative risk of hormone-sensitive cancer has been reported. In the brain, TIB can improve mood and cognition, neuroinflammation, and reactive gliosis. This review aims to discuss the systemic effects of TIB on peri- and post-menopausal women and its role in the brain. We suggest that TIB is a hormonal therapy with promising neuroprotective properties.


Subject(s)
Brain/drug effects , Estrogen Receptor Modulators/pharmacology , Menopause/drug effects , Neuroprotective Agents/pharmacology , Norpregnenes/pharmacology , Brain/immunology , Brain/metabolism , Estrogen Receptor Modulators/adverse effects , Female , Humans , Menopause/immunology , Menopause/metabolism , Norpregnenes/adverse effects
15.
Front Pharmacol ; 11: 303, 2020.
Article in English | MEDLINE | ID: mdl-32300297

ABSTRACT

Fear memory extinction (FE) is an important therapeutic goal for Posttraumatic stress disorder (PTSD). Cotinine facilitates FE in rodents, in part due to its inhibitory effect on the amygdala by the glutamatergic projections from the medial prefrontal cortex (mPFC). The cellular and behavioral effects of infusing cotinine into the mPFC on FE, astroglia survival, and the expression of bone morphogenetic proteins (BMP) 2 and 8, were assessed in C57BL/6 conditioned male mice. The role of the α4ß2- and α7 nicotinic acetylcholine receptors (nAChRs) on cotinine's actions were also investigated. Cotinine infused into the mPFC enhanced contextual FE and decreased BMP8 expression by a mechanism dependent on the α7nAChRs. In addition, cotinine increased BMP2 expression and prevented the loss of GFAP + astrocytes in a form independent on the α7nAChRs but dependent on the α4ß2 nAChRs. This evidence suggests that cotinine exerts its effect on FE by modulating nAChRs signaling in the brain.

16.
Front Aging Neurosci ; 12: 4, 2020.
Article in English | MEDLINE | ID: mdl-32076403

ABSTRACT

Parkinson's disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.

17.
Int J Neurosci ; 130(4): 398-406, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31714811

ABSTRACT

Background: Neurosciences research has increased significantly in recent years around the world. It has led to the development of interdisciplinary work, moving from activities from isolated fields (such as biology, psychology or neurology) to research that involves different scientific perspectives. In developing regions, such as Latin America, it has additional challenges, related to available funding and infrastructure.Aim: To analyze key factors in scientific productivity in neurosciences in Latin America.Methods: A bibliometric analysis of the scientific productivity in neurosciences in main five Latin American countries (Argentina, Brazil, Chile, Colombia and Mexico) was carried out.Results: Brazil was the largest producer of scientific articles, and receptor of citations, in neurosciences in 1998-2017, followed by Mexico. We identified highly cited papers, top institutions, networks of authors, main journals and key areas in neurosciences for this period in the 5 countries.Conclusions: Scientific productivity in neurosciences in Latin America would benefit from the consolidation of more regional, interdisciplinary and international research networks. In this work, we discuss key elements for the consolidation of neurosciences research in Latin America.


Subject(s)
Bibliometrics , Neurosciences/statistics & numerical data , Periodicals as Topic/statistics & numerical data , Biomedical Research/statistics & numerical data , Humans , Latin America , Peer Review, Research
18.
J Neuroendocrinol ; 32(1): e12776, 2020 01.
Article in English | MEDLINE | ID: mdl-31334878

ABSTRACT

The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.


Subject(s)
Brain/metabolism , Estrogens/metabolism , Fatty Acids, Nonesterified/metabolism , Inflammation/metabolism , Neuroglia/metabolism , Animals , Brain/pathology , Humans , Inflammation/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Signal Transduction/physiology
19.
Curr Pharm Des ; 25(45): 4747-4754, 2019.
Article in English | MEDLINE | ID: mdl-31845627

ABSTRACT

Free radicals (FR) act on living organisms and present unpaired electrons in the molecular orbitals of oxygen or nitrogen species. They are classified as redox reactions and account for a wide range of processes in biological systems. Genetic and environmental factors may alter the levels of FR in the cell, leading to deleterious consequences such as membrane lipid peroxidation, protein nitration, enzyme, carbohydrate and DNA damage, ultimately resulting in premature aging and a pro-inflammatory microenvironment as observed in Alzheimer's disease (AD) and autism spectrum disorder (ASD). O2 radical ability to act as a Lewis base and to form a complex with metal transition such as iron and copper (Lewis acids) leads to biomolecules oxidation at physiological pH, thus increasing the possibility of injury and oxidative damage in biological tissues. In this review, we discuss the role of metals, like copper, and the amyloid precursor protein (APP) derivative (s-APP-alpha) as an antioxidant and a possible adjuvant in the treatment of some autistic spectrum disorder symptoms (ASD).


Subject(s)
Amyloid beta-Protein Precursor , Autism Spectrum Disorder , Copper/toxicity , Free Radicals , Antioxidants , Humans , Oxidative Stress
20.
Biotechniques ; 67(4): 192-199, 2019 10.
Article in English | MEDLINE | ID: mdl-31560239

ABSTRACT

Several approaches for miRNA expression analysis have been developed in recent years. In this article, we provide an updated and comprehensive review of available qPCR-based methods for miRNA expression analysis and discuss their advantages and disadvantages. Existing techniques involve the use of stem-loop reverse transcriptase-PCR, polyadenylation of RNAs, ligation of adapters or RT with complex primers, using universal or miRNA-specific qPCR primers and/or probes. Many of these methods are oriented towards the expression analysis of mature miRNAs and few are designed for the study of pre-miRNAs and pri-miRNAs. We also discuss findings from articles that compare results from existing methods. Finally, we suggest key points for the improvement of available techniques and for the future development of additional methods.


Subject(s)
Gene Expression , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction/methods , Computer Simulation , DNA Primers , High-Throughput Nucleotide Sequencing , Polyadenylation , Software
SELECTION OF CITATIONS
SEARCH DETAIL