Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Genet ; 55(8): 1370-1380, 2023 08.
Article in English | MEDLINE | ID: mdl-37430091

ABSTRACT

How enhancers control target gene expression over long genomic distances remains an important unsolved problem. Here we investigated enhancer-promoter communication by integrating data from nucleosome-resolution genomic contact maps, nascent transcription and perturbations affecting either RNA polymerase II (Pol II) dynamics or the activity of thousands of candidate enhancers. Integration of new Micro-C experiments with published CRISPRi data demonstrated that enhancers spend more time in close proximity to their target promoters in functional enhancer-promoter pairs compared to nonfunctional pairs, which can be attributed in part to factors unrelated to genomic position. Manipulation of the transcription cycle demonstrated a key role for Pol II in enhancer-promoter interactions. Notably, promoter-proximal paused Pol II itself partially stabilized interactions. We propose an updated model in which elements of transcriptional dynamics shape the duration or frequency of interactions to facilitate enhancer-promoter communication.


Subject(s)
Enhancer Elements, Genetic , RNA Polymerase II , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Enhancer Elements, Genetic/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic
2.
Res Sq ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36993251

ABSTRACT

Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. We found that unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites. This proto-paused-like state transitioned to a longer, focused pause in derived metazoans which coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF reverts the mammalian focal pause to a proto-pause-like state and compromises transcriptional activation for a set of heat shock genes. Collectively, this work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.

3.
Nat Commun ; 14(1): 1753, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36990976

ABSTRACT

During meiotic prophase I, spermatocytes must balance transcriptional activation with homologous recombination and chromosome synapsis, biological processes requiring extensive changes to chromatin state. We explored the interplay between chromatin accessibility and transcription through prophase I of mammalian meiosis by measuring genome-wide patterns of chromatin accessibility, nascent transcription, and processed mRNA. We find that Pol II is loaded on chromatin and maintained in a paused state early during prophase I. In later stages, paused Pol II is released in a coordinated transcriptional burst mediated by the transcription factors A-MYB and BRDT, resulting in ~3-fold increase in transcription. Transcriptional activity is temporally and spatially segregated from key steps of meiotic recombination: double strand breaks show evidence of chromatin accessibility earlier during prophase I and at distinct loci from those undergoing transcriptional activation, despite shared chromatin marks. Our findings reveal mechanisms underlying chromatin specialization in either transcription or recombination in meiotic cells.


Subject(s)
Meiosis , RNA Polymerase II , Animals , Male , Chromatin/genetics , Chromosomes , Gene Expression Regulation , Mammals/genetics , Meiosis/genetics , RNA Polymerase II/genetics , Spermatocytes , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Nuclear Proteins/metabolism
4.
J Immunol ; 208(5): 1007-1020, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35181641

ABSTRACT

E-protein transcription factors limit group 2 innate lymphoid cell (ILC2) development while promoting T cell differentiation from common lymphoid progenitors. Inhibitors of DNA binding (ID) proteins block E-protein DNA binding in common lymphoid progenitors to allow ILC2 development. However, whether E-proteins influence ILC2 function upon maturity and activation remains unclear. Mice that overexpress ID1 under control of the thymus-restricted proximal Lck promoter (ID1tg/WT) have a large pool of primarily thymus-derived ILC2s in the periphery that develop in the absence of E-protein activity. We used these mice to investigate how the absence of E-protein activity affects ILC2 function and the genomic landscape in response to house dust mite (HDM) allergens. ID1tg/WT mice had increased KLRG1- ILC2s in the lung compared with wild-type (WT; ID1WT/WT) mice in response to HDM, but ID1tg/WT ILC2s had an impaired capacity to produce type 2 cytokines. Analysis of WT ILC2 accessible chromatin suggested that AP-1 and C/EBP transcription factors but not E-proteins were associated with ILC2 inflammatory gene programs. Instead, E-protein binding sites were enriched at functional genes in ILC2s during development that were later dynamically regulated in allergic lung inflammation, including genes that control ILC2 response to cytokines and interactions with T cells. Finally, ILC2s from ID1tg/WT compared with WT mice had fewer regions of open chromatin near functional genes that were enriched for AP-1 factor binding sites following HDM treatment. These data show that E-proteins shape the chromatin landscape during ILC2 development to dictate the functional capacity of mature ILC2s during allergic inflammation in the lung.


Subject(s)
Antigens, Dermatophagoides/immunology , Asthma/immunology , Inhibitor of Differentiation Protein 1/metabolism , T-Lymphocytes/immunology , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Allergens/immunology , Animals , Asthma/pathology , Cell Differentiation/immunology , Chromatin/metabolism , Cytokines/immunology , DNA-Binding Proteins/antagonists & inhibitors , Female , Lectins, C-Type/genetics , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pyroglyphidae/immunology , Receptors, Immunologic/genetics , Stem Cells/cytology , T-Lymphocytes/cytology , Transcription Factor AP-1/metabolism
5.
Nat Commun ; 12(1): 6590, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782625

ABSTRACT

The advent of animal husbandry and hunting increased human exposure to zoonotic pathogens. To understand how a zoonotic disease may have influenced human evolution, we study changes in human expression of anthrax toxin receptor 2 (ANTXR2), which encodes a cell surface protein necessary for Bacillus anthracis virulence toxins to cause anthrax disease. In immune cells, ANTXR2 is 8-fold down-regulated in all available human samples compared to non-human primates, indicating regulatory changes early in the evolution of modern humans. We also observe multiple genetic signatures consistent with recent positive selection driving a European-specific decrease in ANTXR2 expression in multiple tissues affected by anthrax toxins. Our observations fit a model in which humans adapted to anthrax disease following early ecological changes associated with hunting and scavenging, as well as a second period of adaptation after the rise of modern agriculture.


Subject(s)
Evolution, Molecular , Gene Expression Regulation , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Animals , Antigens, Bacterial , Bacillus anthracis/genetics , Bacterial Toxins , Cell Line , Down-Regulation , Humans , K562 Cells , Membrane Proteins/metabolism , Virulence , Zoonoses
6.
Bioinformatics ; 37(24): 4727-4736, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34382072

ABSTRACT

MOTIVATION: Quantification of isoform abundance has been extensively studied at the mature RNA level using RNA-seq but not at the level of precursor RNAs using nascent RNA sequencing. RESULTS: We address this problem with a new computational method called Deconvolution of Expression for Nascent RNA-sequencing data (DENR), which models nascent RNA-sequencing read-counts as a mixture of user-provided isoforms. The baseline algorithm is enhanced by machine-learning predictions of active transcription start sites and an adjustment for the typical 'shape profile' of read-counts along a transcription unit. We show that DENR outperforms simple read-count-based methods for estimating gene and isoform abundances, and that transcription of multiple pre-RNA isoforms per gene is widespread, with frequent differences between cell types. In addition, we provide evidence that a majority of human isoform diversity derives from primary transcription rather than from post-transcriptional processes. AVAILABILITY AND IMPLEMENTATION: DENR and nascentRNASim are freely available at https://github.com/CshlSiepelLab/DENR (version v1.0.0) and https://github.com/CshlSiepelLab/nascentRNASim (version v0.3.0). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA Isoforms , RNA , Humans , RNA Isoforms/genetics , Software , Protein Isoforms/genetics , Sequence Analysis, RNA/methods , Eukaryotic Initiation Factors/genetics
7.
Sci Rep ; 9(1): 9987, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292494

ABSTRACT

Mitochondrial complex I (CI) is the largest multi-subunit oxidative phosphorylation (OXPHOS) protein complex. Recent availability of a high-resolution human CI structure, and from two non-human mammals, enabled predicting the impact of mutations on interactions involving each of the 44 CI subunits. However, experimentally assessing the impact of the predicted interactions requires an easy and high-throughput method. Here, we created such a platform by cloning all 37 nuclear DNA (nDNA) and 7 mitochondrial DNA (mtDNA)-encoded human CI subunits into yeast expression vectors to serve as both 'prey' and 'bait' in the split murine dihydrofolate reductase (mDHFR) protein complementation assay (PCA). We first demonstrated the capacity of this approach and then used it to examine reported pathological OXPHOS CI mutations that occur at subunit interaction interfaces. Our results indicate that a pathological frame-shift mutation in the MT-ND2 gene, causing the replacement of 126 C-terminal residues by a stretch of only 30 amino acids, resulted in loss of specificity in ND2-based interactions involving these residues. Hence, the split mDHFR PCA is a powerful assay for assessing the impact of disease-causing mutations on pairwise protein-protein interactions in the context of a large protein complex, thus offering a possible mechanistic explanation for the underlying pathogenicity.


Subject(s)
Frameshift Mutation , Genetic Predisposition to Disease/genetics , NADH Dehydrogenase/chemistry , NADH Dehydrogenase/genetics , Binding Sites , Cell Nucleus/genetics , Cloning, Molecular , Electron Transport Complex I/chemistry , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Humans , Mitochondria/genetics , Models, Molecular , NADH Dehydrogenase/metabolism , Protein Binding
8.
Trends Genet ; 34(9): 682-692, 2018 09.
Article in English | MEDLINE | ID: mdl-29945721

ABSTRACT

The bacterial heritage of mitochondria, as well as its independent genome [mitochondrial DNA (mtDNA)] and polycistronic transcripts, led to the view that mitochondrial transcriptional regulation relies on an evolutionarily conserved, prokaryotic-like system that is separated from the rest of the cell. Indeed, mtDNA transcription was previously thought to be governed by a few dedicated direct regulators, namely, the mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERF1). Recent findings have, however, revealed that known nuclear gene expression regulators are also involved in mtDNA transcription and have identified novel transcriptional features consistent with adaptation of the mitochondria to the regulatory environment of the precursor of the eukaryotic cell. Finally, whereas mammals follow the human mtDNA transcription pattern, other organisms notably diverge in terms of mtDNA transcriptional regulation. Hence, mtDNA transcriptional regulation is likely more evolutionary diverse than once thought.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Mitochondria/genetics , Transcription, Genetic , Animals , DNA-Binding Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation/genetics , Humans , Mitochondrial Proteins/genetics , Shelterin Complex , Telomere-Binding Proteins/genetics , Transcription Factors/genetics
9.
Genome Res ; 28(7): 952-967, 2018 07.
Article in English | MEDLINE | ID: mdl-29903725

ABSTRACT

Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B (LDHB), which associates with high OXPHOS activity, at the expense of LDHA, which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities.


Subject(s)
Brain/metabolism , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Glycolysis/genetics , Humans , Isoenzymes/genetics , L-Lactate Dehydrogenase/genetics , Neurons/metabolism , Oxidative Phosphorylation , Protein Isoforms/genetics
10.
Genome Biol Evol ; 7(12): 3322-36, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590214

ABSTRACT

Compatibility between the nuclear (nDNA) and mitochondrial (mtDNA) genomes is important for organismal health. However, its significance for major evolutionary processes such as speciation is unclear, especially in vertebrates. We previously identified a sharp mtDNA-specific sequence divergence between morphologically indistinguishable chameleon populations (Chamaeleo chamaeleon recticrista) across an ancient Israeli marine barrier (Jezreel Valley). Because mtDNA introgression and gender-based dispersal were ruled out, we hypothesized that mtDNA spatial division was maintained by mito-nuclear functional compensation. Here, we studied RNA-seq generated from each of ten chameleons representing the north and south populations and identified candidate nonsynonymous substitutions (NSSs) matching the mtDNA spatial distribution. The most prominent NSS occurred in 14 nDNA-encoded mitochondrial proteins. Increased chameleon sample size (N = 70) confirmed the geographic differentiation in POLRMT, NDUFA5, ACO1, LYRM4, MARS2, and ACAD9. Structural and functionality evaluation of these NSSs revealed high functionality. Mathematical modeling suggested that this mito-nuclear spatial divergence is consistent with hybrid breakdown. We conclude that our presented evidence and mathematical model underline mito-nuclear interactions as a likely role player in incipient speciation in vertebrates.


Subject(s)
Genes, Mitochondrial , Genetic Speciation , Iguanas/genetics , Animals , Evolution, Molecular , Models, Genetic , Polymorphism, Genetic
11.
Front Genet ; 5: 448, 2014.
Article in English | MEDLINE | ID: mdl-25566330

ABSTRACT

Most cell functions are carried out by interacting factors, thus underlying the functional importance of genetic interactions between genes, termed epistasis. Epistasis could be under strong selective pressures especially in conditions where the mutation rate of one of the interacting partners notably differs from the other. Accordingly, the order of magnitude higher mitochondrial DNA (mtDNA) mutation rate as compared to the nuclear DNA (nDNA) of all tested animals, should influence systems involving mitochondrial-nuclear (mito-nuclear) interactions. Such is the case of the energy producing oxidative phosphorylation (OXPHOS) and mitochondrial translational machineries which are comprised of factors encoded by both the mtDNA and the nDNA. Additionally, the mitochondrial RNA transcription and mtDNA replication systems are operated by nDNA-encoded proteins that bind mtDNA regulatory elements. As these systems are central to cell life there is strong selection toward mito-nuclear co-evolution to maintain their function. However, it is unclear whether (A) mito-nuclear co-evolution befalls only to retain mitochondrial functions during evolution or, also, (B) serves as an adaptive tool to adjust for the evolving energetic demands as species' complexity increases. As the first step to answer these questions we discuss evidence of both negative and adaptive (positive) selection acting on the mtDNA and nDNA-encoded genes and the effect of both types of selection on mito-nuclear interacting factors. Emphasis is given to the crucial role of recurrent ancient (nodal) mutations in such selective events. We apply this point-of-view to the three available types of mito-nuclear co-evolution: protein-protein (within the OXPHOS system), protein-RNA (mainly within the mitochondrial ribosome), and protein-DNA (at the mitochondrial replication and transcription machineries).

SELECTION OF CITATIONS
SEARCH DETAIL
...