Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 4590(4): zootaxa.4590.4.3, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31716081

ABSTRACT

Deep-sea shrimps of the species Plesionika acanthonotus (Smith, 1882) and P. holthuisi Crosnier Forest, 1968 are morphologically similar and exhibit overlapping amphi-Atlantic distributions. In the literature, through morphological studies, there are reports of doubts about the validity of P. holthuisi and some authors believe that the eastern and western Atlantic populations of P. acanthonothus could represent two distinct species. The objective of the present study was to use molecular data to elucidate the taxonomic status of the two populations of P. acanthonothus. DNA sequences of two mitochondrial genes (16S rDNA and Cytochrome Oxidase subunit I) and a nuclear gene (Histone 3) were obtained for both species and for both populations of P. acanthonotus. The sequences were also obtained from Genbank for comparison. The trees (separate and multi-locus/partitioned genes) were generated by Bayesian Inference analyzes, and genetic divergence (Kimura-2-parameters) was also calculated. All specimens that had their DNA sequenced were examined morphologically to confirm their identification; morphological variations were noted. The genetic data showed that Plesionika holthuisi is closely related to P. acanthonotus, but clearly separated, indicating that P. holthuisi is a valid species. In the multi-locus analysis, the P. acanthonothus specimens were divided into two clades, one with the eastern Atlantic specimens and another with the western Atlantic specimens. However, this genetic separation was considered to be a population structuring for three reasons: (1) the genetic divergences of the two mitochondrial genes between these two groups (eastern Atlantic X western Atlantic) were smaller than the interspecific divergence for Plesionika; (2) the P. acanthonothus sequences of the Histone 3 gene showed no genetic variation; (3) in the analyzed individuals, no valid morphological character was found to support this separation. Thus, the conclusion of this study is that P. holthuisi probably is a valid species and P. acanthonothus presents two populations with mitochondrial divergences that could be in the process of speciation, but which currently represent only one species.


Subject(s)
Decapoda , Pandalidae , Animals , Bayes Theorem , DNA, Mitochondrial , DNA, Ribosomal , Phylogeny
2.
Mar Pollut Bull ; 145: 429-435, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31590807

ABSTRACT

Refined baseline inventories of non-indigenous species (NIS) are set per European Union Member State (MS), in the context of the Marine Strategy Framework Directive (MSFD). The inventories are based on the initial assessment of the MSFD (2012) and the updated data of the European Alien Species Information Network, in collaboration with NIS experts appointed by the MSs. The analysis revealed that a large number of NIS was not reported from the initial assessments. Moreover, several NIS initially listed are currently considered as native in Europe or were proven to be historical misreportings. The refined baseline inventories constitute a milestone for the MSFD Descriptor 2 implementation, providing an improved basis for reporting new NIS introductions, facilitating the MSFD D2 assessment. In addition, the inventories can help MSs in the establishment of monitoring systems of targeted NIS, and foster cooperation on monitoring of NIS across or within shared marine subregions.


Subject(s)
Aquatic Organisms/classification , Introduced Species/statistics & numerical data , Aquatic Organisms/growth & development , Environmental Monitoring , Europe , European Union , Marine Biology
3.
PeerJ ; 7: e7334, 2019.
Article in English | MEDLINE | ID: mdl-31579560

ABSTRACT

Currently there are 21 shrimp species in the northeastern Atlantic and Mediterranean Sea which are considered to belong to the superfamily Oplophoroidea, but the larval development is unknown for most of them. The complete larval development of Systellaspis debilis (Milne-Edwards, 1881), here described and illustrated, is the first one to have been successfully reared in the laboratory, consisting of four zoeal and one decapodid stages. The zoeae were found to be fully lecithotrophic, which together with the females' lower fecundity, are probably evolutionary consequences of the species mesopelagic habitat.

4.
Zootaxa ; 4066(4): 399-420, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-27395843

ABSTRACT

Of the 12 species of Thor described until present date, only three (25%) have their complete larval development known. Present work describes the complete larval development of Thor amboinensis, based on laboratory-reared material. The spent females were identified through the analysis of the partial sequences of the mitochondrial DNA barcode, also used for the reconstruction of the phylogenetic relationships within the recently resurrected and recognized family Thoridae Kingsley, 1879. Eight zoeal stages and one decapodid complete this species larval development. In the genus Thor, the number of zoeal stages varies greatly from two (T. dobkini) to eight (T. amboinensis and T. floridanus). The larvae of T. ambionensis and T. floridanus are readily distinguished from each other by the ornamentation of the ventral margin of the carapace and the pereiopods development. The first zoeal stage of T. amboinensis described by Yang & Okuno (2004) and the one described in present study are very similar. A brief discussion on the morphological characters and on the number of zoeal stages of the genus, as well as of the previous larval descriptions is made. The phylogenetic analysis suggest cryptic speciation for geographical separated populations of T. amboinensis, paraphyly of the genus Eualus, and the reassignment of E. cranchii to a different genus.


Subject(s)
Decapoda/genetics , Larva/growth & development , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , DNA Barcoding, Taxonomic , DNA, Mitochondrial/genetics , Decapoda/anatomy & histology , Decapoda/classification , Decapoda/growth & development , Ecosystem , Female , Laboratories , Larva/anatomy & histology , Larva/classification , Larva/genetics , Male , Organ Size , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...