Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Ther Pat ; 31(12): 1117-1154, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34176417

ABSTRACT

Introduction: O-GlcNAcylation is a highly abundant post-translational modification of multiple proteins, including the microtubule-binding protein tau, governed by just two enzymes' concerted action O-GlcNAc transferase OGT and the hydrolase OGA. It is an approach to reduce abnormal tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) and related tauopathies based on the ability of O-GlcNAcylation competing with tau phosphorylation, thus minimizing aggregation. The preclinical validation confirmed OGA inhibitors' efficacy in different transgenic tau mice models. Only three other OGA inhibitors have advanced into clinical trials thus far.Areas covered: 2008-2020 patent literature on OGA inhibitors.Expert opinion: Neurodegenerative disorders and AD specifically represent an enormous challenge since no effective treatments are available. Promising preclinical data has prompted considerable interest in searching for OGA inhibitors as a potential treatment for neurodegenerative disorders. Efforts from different companies have yielded a diverse set of chemotypes. OGA is a highly ubiquitous enzyme with many client proteins, generated data confirms a promising benign profile for OGA inhibition in healthy volunteers. Additionally, OGA PET tracers' existence will be critical for proper dose selection for future PoC Phase II studies, which will proof the true potential of OGA inhibition for the treatment of AD and other tauopathies.


Subject(s)
Alzheimer Disease/drug therapy , Tauopathies/drug therapy , beta-N-Acetylhexosaminidases/antagonists & inhibitors , Alzheimer Disease/physiopathology , Animals , Humans , Mice , Patents as Topic , Phosphorylation , Protein Processing, Post-Translational , Tauopathies/physiopathology , beta-N-Acetylhexosaminidases/metabolism , tau Proteins/metabolism
2.
J Med Chem ; 63(22): 14017-14044, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33197187

ABSTRACT

O-GlcNAcylation is a post-translational modification of tau understood to lower the speed and yield of its aggregation, a pathological hallmark of Alzheimer's disease (AD). O-GlcNAcase (OGA) is the only enzyme that removes O-linked N-acetyl-d-glucosamine (O-GlcNAc) from target proteins. Therefore, inhibition of OGA represents a potential approach for the treatment of AD by preserving the O-GlcNAcylated tau protein. Herein, we report the multifactorial optimization of high-throughput screening hit 8 to a potent, metabolically stable, and orally bioavailable diazaspirononane OGA inhibitor (+)-56. The human OGA X-ray crystal structure has been recently solved, but bacterial hydrolases are still widely used as structural homologues. For the first time, we reveal how a nonsaccharide series of inhibitors binds bacterial OGA and discuss the suitability of two different bacterial orthologues as surrogates for human OGA. These breakthroughs enabled structure-activity relationships to be understood and provided context and boundaries for the optimization of druglike properties.


Subject(s)
Aza Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Neurodegenerative Diseases/drug therapy , beta-N-Acetylhexosaminidases/antagonists & inhibitors , beta-N-Acetylhexosaminidases/metabolism , Animals , Aza Compounds/chemistry , Catalysis , Enzyme Inhibitors/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Mutagenesis , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(22): 5115-20, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26475522

ABSTRACT

We report the optimization of a series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from an acyl dihydropyrazolo[1,5-a]pyrimidinone class. Investigation of exocyclic amide transpositions with this unique 5,6-bicyclic core were conducted in attempt to modulate physicochemical properties and identify a suitable backup candidate with a reduced half-life. A potent and selective PAM, 1-(2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)ethanone (9a, VU0462807), was identified with superior solubility and efficacy in the acute amphetamine-induced hyperlocomotion (AHL) rat model with a minimum effective dose of 3mg/kg. Attempts to mitigate oxidative metabolism of the western phenoxy of 9a through extensive modification and profiling are described.


Subject(s)
Brain/metabolism , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Pyrimidinones/pharmacokinetics , Receptor, Metabotropic Glutamate 5/agonists , Allosteric Regulation , Animals , Dogs , Humans , Ligands , Male , Motor Activity/drug effects , Pyrazoles/blood , Pyrazoles/chemical synthesis , Pyrazoles/isolation & purification , Pyrazoles/pharmacology , Pyrimidines/blood , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrimidinones/blood , Pyrimidinones/chemical synthesis , Pyrimidinones/isolation & purification , Pyrimidinones/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
Neuron ; 86(4): 1029-1040, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25937172

ABSTRACT

Schizophrenia is associated with disruptions in N-methyl-D-aspartate glutamate receptor subtype (NMDAR)-mediated excitatory synaptic signaling. The metabotropic glutamate receptor subtype 5 (mGlu5) is a closely associated signaling partner with NMDARs and regulates NMDAR function in forebrain regions implicated in the pathology of schizophrenia. Efficacy of mGlu5 positive allosteric modulators (PAMs) in animal models of psychosis and cognition was previously attributed to potentiation of NMDAR function. To directly test this hypothesis, we identified VU0409551 as a novel mGlu5 PAM that exhibits distinct stimulus bias and selectively potentiates mGlu5 coupling to Gαq-mediated signaling but not mGlu5 modulation of NMDAR currents or NMDAR-dependent synaptic plasticity in the rat hippocampus. Interestingly, VU0409551 produced robust antipsychotic-like and cognition-enhancing activity in animal models. These data provide surprising new mechanistic insights into the actions of mGlu5 PAMs and suggest that modulation of NMDAR currents is not critical for in vivo efficacy. VIDEO ABSTRACT.


Subject(s)
Antipsychotic Agents/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Allosteric Regulation/drug effects , Animals , Cognition/drug effects , Cognition/physiology , Glutamic Acid/metabolism , HEK293 Cells , Hippocampus/drug effects , Hippocampus/physiology , Humans , Male , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/genetics , Signal Transduction/drug effects
5.
Bioorg Med Chem Lett ; 24(15): 3641-6, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24961642

ABSTRACT

We report the optimization of a series of novel metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from a 5,6-bicyclic class of dihydropyrazolo[1,5-a]pyridin-4(5H)-ones containing a phenoxymethyl linker. Studies focused on a survey of non-amide containing hydrogen bond accepting (HBA) pharmacophore replacements. A highly potent and selective PAM, 2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyridin-4(5H)-one (11, VU0462054), bearing a simple ketone moiety, was identified (LE=0.52, LELP=3.2). In addition, hydroxyl, difluoro, ether, and amino variations were examined. Despite promising lead properties and exploration of alternative core heterocycles, linkers, and ketone replacements, oxidative metabolism and in vivo clearance remained problematic for the series.


Subject(s)
Drug Discovery , Piperidones/pharmacology , Pyrazoles/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Piperidones/chemical synthesis , Piperidones/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Structure-Activity Relationship
6.
J Med Chem ; 57(13): 5620-37, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24914612

ABSTRACT

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure-activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis.


Subject(s)
Naphthyridines/therapeutic use , Receptor, Metabotropic Glutamate 5/drug effects , Allosteric Regulation , Animals , Antipsychotic Agents/chemistry , HEK293 Cells , Humans , Microsomes, Liver/metabolism , Naphthyridines/chemical synthesis , Naphthyridines/chemistry , Rats , Receptor, Metabotropic Glutamate 5/agonists , Schizophrenia/drug therapy , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...