Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
JAMA Netw Open ; 7(8): e2429613, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39158906

ABSTRACT

Importance: Current guidance to furlough health care staff with mild COVID-19 illness may prevent the spread of COVID-19 but may worsen nursing home staffing shortages as well as health outcomes that are unrelated to COVID-19. Objective: To compare COVID-19-related with non-COVID-19-related harms associated with allowing staff who are mildly ill with COVID-19 to work while masked. Design, Setting, and Participants: This modeling study, conducted from November 2023 to June 2024, used an agent-based model representing a 100-bed nursing home and its residents, staff, and their interactions; care tasks; and resident and staff health outcomes to simulate the impact of different COVID-19 furlough policies over 1 postpandemic year. Exposures: Simulating increasing proportions of staff who are mildly ill and are allowed to work while wearing N95 respirators under various vaccination coverage, SARS-CoV-2 transmissibility and severity, and masking adherence. Main Outcomes and Measures: The main outcomes were staff and resident COVID-19 cases, staff furlough days, missed care tasks, nursing home resident hospitalizations (related and unrelated to COVID-19), deaths, and costs. Results: In the absence of SARS-CoV-2 infection in the study's 100-bed agent-based model, nursing home understaffing resulted in an annual mean (SD) 93.7 (0.7) missed care tasks daily (22.1%), 38.0 (7.6) resident hospitalizations (5.2%), 4.6 (2.2) deaths (0.6%), and 39.7 (19.8) quality-adjusted life years lost from non-COVID-19-related harms, costing $1 071 950 ($217 200) from the Centers for Medicare & Medicaid Services (CMS) perspective and $1 112 800 ($225 450) from the societal perspective. Under the SARS-CoV-2 Omicron variant conditions from 2023 to 2024, furloughing all staff who tested positive for SARS-CoV-2 was associated with a mean (SD) 326.5 (69.1) annual furlough days and 649.5 (95% CI, 593.4-705.6) additional missed care tasks, resulting in 4.3 (95% CI, 2.9-5.9) non-COVID-19-related resident hospitalizations and 0.7 (95% CI, 0.2-1.1) deaths, costing an additional $247 090 (95% CI, $203 160-$291 020) from the CMS perspective and $405 250 (95% CI, $358 550-$451 950) from the societal perspective. Allowing 75% of staff who were mildly ill to work while masked was associated with 5 additional staff and 5 additional resident COVID-19 cases without added COVID-19-related hospitalizations but mitigated staffing shortages, with 475.9 additional care tasks being performed annually, 3.5 fewer non-COVID-19-related hospitalizations, and 0.4 fewer non-COVID-19-related deaths. Allowing staff who were mildly ill to work ultimately saved an annual mean $85 470 (95% CI, $41 210-$129 730) from the CMS perspective and $134 450 (95% CI, $86 370-$182 540) from the societal perspective. These results were robust to increased vaccination coverage, increased nursing home transmission, increased importation of COVID-19 from the community, and failure to mask while working ill. Conclusion and Relevance: In this modeling study of staff COVID-19 furlough policies, allowing nursing home staff to work with mild COVID-19 illness was associated with fewer resident harms from staffing shortages and missed care tasks than harms from increased COVID-19 transmission, ultimately saving substantial direct medical and societal costs.


Subject(s)
COVID-19 , Nursing Homes , SARS-CoV-2 , Humans , COVID-19/epidemiology , Nursing Homes/statistics & numerical data , Masks/statistics & numerical data , Health Personnel , United States/epidemiology
2.
J Health Commun ; 29(sup1): 77-88, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38845202

ABSTRACT

Over the past sixty years, scientists have been warning about climate change and its impacts on human health, but evidence suggests that many may not be heeding these concerns. This raises the question of whether new communication approaches are needed to overcome the unique challenges of communicating what people can do to slow or reverse climate change. To better elucidate the challenges of communicating about the links between human activity, climate change and its effects, and identify potential solutions, we developed a systems map of the factors and processes involved based on systems mapping sessions with climate change and communication experts. The systems map revealed 27 communication challenges such as "Limited information on how individual actions contribute to collective human activity," "Limited information on how present activity leads to long-term effects," and "Difficult to represent and communicate complex relationships." The systems map also revealed several themes among the identified challenges that exist in communicating about climate change, including a lack of available data and integrated databases, climate change disciplines working in silos, a need for a lexicon that is easily understood by the public, and the need for new communication strategies to describe processes that take time to manifest.


Subject(s)
Climate Change , Health Communication , Humans , Health Communication/methods , Systems Analysis , Communication
3.
J Health Commun ; 29(sup1): 1-10, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831666

ABSTRACT

Society is at an inflection point-both in terms of climate change and the amount of data and computational resources currently available. Climate change has been a catastrophe in slow motion with relationships between human activity, climate change, and the resulting effects forming a complex system. However, to date, there has been a general lack of urgent responses from leaders and the general public, despite urgent warnings from the scientific community about the consequences of climate change and what can be done to mitigate it. Further, misinformation and disinformation about climate change abound. A major problem is that there has not been enough focus on communication in the climate change field. Since communication itself involves complex systems (e.g. information users, information itself, communications channels), there is a need for more systems approaches to communication about climate change. Utilizing systems approaches to really understand and anticipate how information may be distributed and received before communication has even occurred and adjust accordingly can lead to more proactive precision climate change communication. The time has come to identify and develop more effective, tailored, and precise communication for climate change.


Subject(s)
Climate Change , Health Communication , Humans , Health Communication/methods , Systems Analysis , Communication
5.
J Infect Dis ; 230(2): 382-393, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38581432

ABSTRACT

BACKGROUND: With coronavirus disease 2019 (COVID-19) vaccination no longer mandated by many businesses/organizations, it is now up to individuals to decide whether to get any new boosters/updated vaccines going forward. METHODS: We developed a Markov model representing the potential clinical/economic outcomes from an individual perspective in the United States of getting versus not getting an annual COVID-19 vaccine. RESULTS: For an 18-49 year old, getting vaccinated at its current price ($60) can save the individual on average $30-$603 if the individual is uninsured and $4-$437 if the individual has private insurance, as long as the starting vaccine efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is ≥50% and the weekly risk of getting infected is ≥0.2%, corresponding to an individual interacting with 9 other people in a day under Winter 2023-2024 Omicron SARS-CoV-2 variant conditions with an average infection prevalence of 10%. For a 50-64 year old, these cost-savings increase to $111-$1278 and $119-$1706 for someone without and with insurance, respectively. The risk threshold increases to ≥0.4% (interacting with 19 people/day), when the individual has 13.4% preexisting protection against infection (eg, vaccinated 9 months earlier). CONCLUSIONS: There is both clinical and economic incentive for the individual to continue to get vaccinated against COVID-19 each year.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cost-Benefit Analysis , Markov Chains , SARS-CoV-2 , Vaccination , Humans , COVID-19/prevention & control , COVID-19/economics , COVID-19/epidemiology , COVID-19 Vaccines/economics , COVID-19 Vaccines/administration & dosage , Middle Aged , Adult , Adolescent , SARS-CoV-2/immunology , Vaccination/economics , Young Adult , United States/epidemiology , Male , Female
6.
EClinicalMedicine ; 68: 102369, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38545093

ABSTRACT

Background: With efforts underway to develop a universal coronavirus vaccine, otherwise known as a pan-coronavirus vaccine, this is the time to offer potential funders, researchers, and manufacturers guidance on the potential value of such a vaccine and how this value may change with differing vaccine and vaccination characteristics. Methods: Using a computational model representing the United States (U.S.) population, the spread of SARS-CoV-2 and the various clinical and economic outcomes of COVID-19 such as hospitalisations, deaths, quality-adjusted life years (QALYs) lost, productivity losses, direct medical costs, and total societal costs, we explored the impact of a universal vaccine under different circumstances. We developed and populated this model using data reported by the CDC as well as observational studies conducted during the COVID-19 pandemic. Findings: A pan-coronavirus vaccine would be cost saving in the U.S. as a standalone intervention as long as its vaccine efficacy is ≥10% and vaccination coverage is ≥10%. Every 1% increase in efficacy between 10% and 50% could avert an additional 395,000 infections and save $1.0 billion in total societal costs ($45.3 million in productivity losses, $1.1 billion in direct medical costs). It would remain cost saving even when a strain-specific coronavirus vaccine would be subsequently available, as long as it takes at least 2-3 months to develop, test, and bring that more specific vaccine to the market. Interpretation: Our results provide support for the development and stockpiling of a pan-coronavirus vaccine and help delineate the vaccine characteristics to aim for in development of such a vaccine. Funding: The National Science Foundation, the Agency for Healthcare Research and Quality, the National Institute of General Medical Sciences, the National Center for Advancing Translational Sciences, and the City University of New York.

7.
JAMA Health Forum ; 5(3): e240088, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38488779

ABSTRACT

Importance: There are considerable socioeconomic status (SES) disparities in youth physical activity (PA) levels. For example, studies show that lower-SES youth are less active, have lower participation in organized sports and physical education classes, and have more limited access to PA equipment. Objective: To determine the potential public health and economic effects of eliminating disparities in PA levels among US youth SES groups. Design and Setting: An agent-based model representing all 6- to 17-year-old children in the US was used to simulate the epidemiological, clinical, and economic effects of disparities in PA levels among different SES groups and the effect of reducing these disparities. Main Outcomes and Measures: Anthropometric measures (eg, body mass index) and the presence and severity of risk factors associated with weight (stroke, coronary heart disease, type 2 diabetes, or cancer), as well as direct and indirect cost savings. Results: This model, representing all 50 million US children and adolescents 6 to 17 years old, found that if the US eliminates the disparity in youth PA levels across SES groups, absolute overweight and obesity prevalence would decrease by 0.826% (95% CI, 0.821%-0.832%), resulting in approximately 383 000 (95% CI, 368 000-399 000) fewer cases of overweight and obesity and 101 000 (95% CI, 98 000-105 000) fewer cases of weight-related diseases (stroke and coronary heart disease events, type 2 diabetes, or cancer). This would result in more than $15.60 (95% CI, $15.01-$16.10) billion in cost savings over the youth cohort's lifetime. There are meaningful benefits even when reducing the disparity by just 25%, which would result in $1.85 (95% CI, $1.70-$2.00) billion in direct medical costs averted and $2.48 (95% CI, $2.04-$2.92) billion in productivity losses averted. For every 1% in disparity reduction, total productivity losses would decrease by about $83.8 million, and total direct medical costs would decrease by about $68.7 million. Conclusions and Relevance: This study quantified the potential savings from eliminating or reducing PA disparities, which can help policymakers, health care systems, schools, funders, sports organizations, and other businesses better prioritize investments toward addressing these disparities.


Subject(s)
Coronary Disease , Diabetes Mellitus, Type 2 , Neoplasms , Stroke , Child , Humans , Adolescent , Overweight , Socioeconomic Disparities in Health , Exercise , Obesity
8.
J Am Med Dir Assoc ; 25(4): 639-646.e5, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432644

ABSTRACT

OBJECTIVES: To evaluate the epidemiologic, clinical, and economic value of an annual nursing home (NH) COVID-19 vaccine campaign and the impact of when vaccination starts. DESIGN: Agent-based model representing a typical NH. SETTING AND PARTICIPANTS: NH residents and staff. METHODS: We used the model representing an NH with 100 residents, its staff, their interactions, COVID-19 spread, and its health and economic outcomes to evaluate the epidemiologic, clinical, and economic value of varying schedules of annual COVID-19 vaccine campaigns. RESULTS: Across a range of scenarios with a 60% vaccine efficacy that wanes starting 4 months after protection onset, vaccination was cost saving or cost-effective when initiated in the late summer or early fall. Annual vaccination averted 102 to 105 COVID-19 cases when 30-day vaccination campaigns began between July and October (varying with vaccination start), decreasing to 97 and 85 cases when starting in November and December, respectively. Starting vaccination between July and December saved $3340 to $4363 and $64,375 to $77,548 from the Centers for Medicare & Medicaid Services and societal perspectives, respectively (varying with vaccination start). Vaccination's value did not change when varying the COVID-19 peak between December and February. The ideal vaccine campaign timing was not affected by reducing COVID-19 levels in the community, or varying transmission probability, preexisting immunity, or COVID-19 severity. However, if vaccine efficacy wanes more quickly (over 1 month), earlier vaccination in July resulted in more cases compared with vaccinating later in October. CONCLUSIONS AND IMPLICATIONS: Annual vaccination of NH staff and residents averted the most cases when initiated in the late summer through early fall, at least 2 months before the COVID-19 winter peak but remained cost saving or cost-effective when it starts in the same month as the peak. This supports tethering COVID vaccination to seasonal influenza campaigns (typically in September-October) for providing protection against SARS-CoV-2 winter surges in NHs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Humans , United States/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Medicare , Vaccination , Nursing Homes
9.
Infect Control Hosp Epidemiol ; 45(6): 754-761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38356377

ABSTRACT

OBJECTIVE: Nursing home residents may be particularly vulnerable to coronavirus disease 2019 (COVID-19). Therefore, a question is when and how often nursing homes should test staff for COVID-19 and how this may change as severe acute respiratory coronavirus virus 2 (SARS-CoV-2) evolves. DESIGN: We developed an agent-based model representing a typical nursing home, COVID-19 spread, and its health and economic outcomes to determine the clinical and economic value of various screening and isolation strategies and how it may change under various circumstances. RESULTS: Under winter 2023-2024 SARS-CoV-2 omicron variant conditions, symptom-based antigen testing averted 4.5 COVID-19 cases compared to no testing, saving $191 in direct medical costs. Testing implementation costs far outweighed these savings, resulting in net costs of $990 from the Centers for Medicare & Medicaid Services perspective, $1,545 from the third-party payer perspective, and $57,155 from the societal perspective. Testing did not return sufficient positive health effects to make it cost-effective [$50,000 per quality-adjusted life-year (QALY) threshold], but it exceeded this threshold in ≥59% of simulation trials. Testing remained cost-ineffective when routinely testing staff and varying face mask compliance, vaccine efficacy, and booster coverage. However, all antigen testing strategies became cost-effective (≤$31,906 per QALY) or cost saving (saving ≤$18,372) when the severe outcome risk was ≥3 times higher than that of current omicron variants. CONCLUSIONS: SARS-CoV-2 testing costs outweighed benefits under winter 2023-2024 conditions; however, testing became cost-effective with increasingly severe clinical outcomes. Cost-effectiveness can change as the epidemic evolves because it depends on clinical severity and other intervention use. Thus, nursing home administrators and policy makers should monitor and evaluate viral virulence and other interventions over time.


Subject(s)
COVID-19 Testing , COVID-19 , Cost-Benefit Analysis , Nursing Homes , SARS-CoV-2 , Humans , Nursing Homes/economics , COVID-19/diagnosis , COVID-19/economics , COVID-19/prevention & control , COVID-19 Testing/economics , COVID-19 Testing/methods , United States
10.
Am J Prev Med ; 66(5): 760-769, 2024 05.
Article in English | MEDLINE | ID: mdl-38416089

ABSTRACT

INTRODUCTION: Healthy People 2030, a U.S. government health initiative, has indicated that increasing youth sports participation to 63.3% is a priority in the U.S. This study quantified the health and economic value of achieving this target. METHODS: An agent-based model developed in 2023 represents each person aged 6-17 years in the U.S. On each simulated day, agents can participate in sports that affect their metabolic and mental health in the model. Each agent can develop different physical and mental health outcomes, associated with direct and indirect costs. RESULTS: Increasing the proportion of youth participating in sports from the most recent participation levels (50.7%) to the Healthy People 2030 target (63.3%) could reduce overweight/obesity prevalence by 3.37% (95% CI=3.35%, 3.39%), resulting in 1.71 million fewer cases of overweight/obesity (95% CI=1.64, 1.77 million). This could avert 352,000 (95% CI=336,200, 367,500) cases of weight-related diseases and gain 1.86 million (95% CI=1.86, 1.87 million) quality-adjusted life years, saving $22.55 billion (95% CI=$22.46, $22.63 billion) in direct medical costs and $25.43 billion (95% CI= $25.25, $25.61 billion) in productivity losses. This would also reduce depression/anxiety symptoms, saving $3.61 billion (95% CI=$3.58, $3.63 billion) in direct medical costs and $28.38 billion (95% CI=$28.20, $28.56 billion) in productivity losses. CONCLUSIONS: This study shows that achieving the Healthy People 2030 objective could save third-party payers, businesses, and society billions of dollars for each cohort of persons aged 6-17 years, savings that would continue to repeat with each new cohort. This suggests that even if a substantial amount is invested toward this objective, such investments could pay for themselves.


Subject(s)
Healthy People Programs , Youth Sports , Humans , Adolescent , Child , United States , Male , Female , Mental Health , Overweight/epidemiology , Overweight/prevention & control
11.
J Health Commun ; 28(sup1): 13-24, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37390012

ABSTRACT

A major challenge in communicating health-related information is the involvement of multiple complex systems from the creation of the information to the sources and channels of dispersion to the information users themselves. To date, public health communications approaches have often not adequately accounted for the complexities of these systems to the degree necessary to have maximum impact. The virality of COVID-19 misinformation and disinformation has brought to light the need to consider these system complexities more extensively. Unaided, it is difficult for humans to see and fully understand complex systems. Luckily, there are a range of systems approaches and methods, such as systems mapping and systems modeling, that can help better elucidate complex systems. Using these methods to better characterize the various systems involved in communicating public health-related information can lead to the development of more tailored, precise, and proactive communications. Proceeding in an iterative manner to help design, implement, and adjust such communications strategies can increase impact and leave less opportunity for misinformation and disinformation to spread.


Subject(s)
COVID-19 , Health Communication , Humans , Public Health , COVID-19/epidemiology
12.
J Med Internet Res ; 24(8): e30581, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35994313

ABSTRACT

BACKGROUND: The increasing prevalence of smartphone apps to help people find different services raises the question of whether apps to help people find physical activity (PA) locations would help better prevent and control having overweight or obesity. OBJECTIVE: The aim of this paper is to determine and quantify the potential impact of a digital health intervention for African American women prior to allocating financial resources toward implementation. METHODS: We developed our Virtual Population Obesity Prevention, agent-based model of Washington, DC, to simulate the impact of a place-tailored digital health app that provides information about free recreation center classes on PA, BMI, and overweight and obesity prevalence among African American women. RESULTS: When the app is introduced at the beginning of the simulation, with app engagement at 25% (eg, 25% [41,839/167,356] of women aware of the app; 25% [10,460/41,839] of those aware downloading the app; and 25% [2615/10,460] of those who download it receiving regular push notifications), and a 25% (25/100) baseline probability to exercise (eg, without the app), there are no statistically significant increases in PA levels or decreases in BMI or obesity prevalence over 5 years across the population. When 50% (83,678/167,356) of women are aware of the app; 58.23% (48,725/83,678) of those who are aware download it; and 55% (26,799/48,725) of those who download it receive regular push notifications, in line with existing studies on app usage, introducing the app on average increases PA and decreases weight or obesity prevalence, though the changes are not statistically significant. When app engagement increased to 75% (125,517/167,356) of women who were aware, 75% (94,138/125,517) of those who were aware downloading it, and 75% (70,603/94,138) of those who downloaded it opting into the app's push notifications, there were statistically significant changes in PA participation, minutes of PA and obesity prevalence. CONCLUSIONS: Our study shows that a digital health app that helps identify recreation center classes does not result in substantive population-wide health effects at lower levels of app engagement. For the app to result in statistically significant increases in PA and reductions in obesity prevalence over 5 years, there needs to be at least 75% (125,517/167,356) of women aware of the app, 75% (94,138/125,517) of those aware of the app download it, and 75% (70,603/94,138) of those who download it opt into push notifications. Nevertheless, the app cannot fully overcome lack of access to recreation centers; therefore, public health administrators as well as parks and recreation agencies might consider incorporating this type of technology into multilevel interventions that also target the built environment and other social determinants of health.


Subject(s)
Mobile Applications , Black or African American , Exercise , Female , Humans , Obesity/epidemiology , Obesity/prevention & control , Overweight
13.
PLoS Med ; 19(6): e1004027, 2022 06.
Article in English | MEDLINE | ID: mdl-35714096

ABSTRACT

Patricia Mabry and coauthors discuss application of systems approaches in cancer research.


Subject(s)
Neoplasms , Humans , Neoplasms/epidemiology , Neoplasms/genetics , Neoplasms/therapy , Research
14.
PLoS One ; 17(5): e0268118, 2022.
Article in English | MEDLINE | ID: mdl-35522673

ABSTRACT

BACKGROUND: Many schools have been cutting physical education (PE) classes due to budget constraints, which raises the question of whether policymakers should require schools to offer PE classes. Evidence suggests that PE classes can help address rising physical inactivity and obesity prevalence. However, it would be helpful to determine if requiring PE is cost-effective. METHODS: We developed an agent-based model of youth in Mexico City and the impact of all schools offering PE classes on changes in weight, weight-associated health conditions and the corresponding direct and indirect costs over their lifetime. RESULTS: If schools offer PE without meeting guidelines and instead followed currently observed class length and time active during class, overweight and obesity prevalence decreased by 1.3% (95% CI: 1.0%-1.6%) and was cost-effective from the third-party payer and societal perspectives ($5,058 per disability-adjusted life year [DALY] averted and $5,786/DALY averted, respectively, assuming PE cost $50.3 million). When all schools offered PE classes meeting international guidelines for PE classes, overweight and obesity prevalence decreased by 3.9% (95% CI: 3.7%-4.3%) in the cohort at the end of five years compared to no PE. Long-term, this averted 3,183 and 1,081 obesity-related health conditions and deaths, respectively and averted ≥$31.5 million in direct medical costs and ≥$39.7 million in societal costs, assuming PE classes cost ≤$50.3 million over the five-year period. PE classes could cost up to $185.5 million and $89.9 million over the course of five years and still remain cost-effective and cost saving respectively, from the societal perspective. CONCLUSION: Requiring PE in all schools could be cost-effective when PE class costs, on average, up to $10,340 per school annually. Further, the amount of time students are active during class is a driver of PE classes' value (e.g., it is cost saving when PE classes meet international guidelines) suggesting the need for specific recommendations.


Subject(s)
Overweight , Physical Education and Training , Adolescent , Cost-Benefit Analysis , Humans , Mexico/epidemiology , Obesity/epidemiology , Obesity/prevention & control , Overweight/epidemiology , Overweight/prevention & control , Schools
15.
Lancet Public Health ; 7(4): e356-e365, 2022 04.
Article in English | MEDLINE | ID: mdl-35276093

ABSTRACT

BACKGROUND: Face mask wearing has been an important part of the response to the COVID-19 pandemic. As vaccination coverage progresses in countries, relaxation of such practices is increasing. Subsequent COVID-19 surges have raised the questions of whether face masks should be encouraged or required and for how long. Here, we aim to assess the value of maintaining face masks use indoors according to different COVID-19 vaccination coverage levels in the USA. METHODS: In this computational simulation-model study, we developed and used a Monte Carlo simulation model representing the US population and SARS-CoV-2 spread. Simulation experiments compared what would happen if face masks were used versus not used until given final vaccination coverages were achieved. Different scenarios varied the target vaccination coverage (70-90%), the date these coverages were achieved (Jan 1, 2022, to July 1, 2022), and the date the population discontinued wearing face masks. FINDINGS: Simulation experiments revealed that maintaining face mask use (at the coverage seen in the USA from March, 2020, to July, 2020) until target vaccination coverages were achieved was cost-effective and in many cases cost saving from both the societal and third-party payer perspectives across nearly all scenarios explored. Face mask use was estimated to be cost-effective and usually cost saving when the cost of face masks per person per day was ≤US$1·25. In all scenarios, it was estimated to be cost-effective to maintain face mask use for about 2-10 weeks beyond the date that target vaccination coverage (70-90%) was achieved, with this added duration being longer when the target coverage was achieved during winter versus summer. Factors that might increase the transmissibility of the virus (eg, emergence of the delta [B.1.617.2] and omicron [B.1.1.529] variants), or decrease vaccine effectiveness (eg, waning immunity or escape variants), or increase social interactions among certain segments of the population, only increased the cost savings or cost-effectiveness provided by maintaining face mask use. INTERPRETATION: Our study provides strong support for maintaining face mask use until and a short time after achieving various final vaccination coverage levels, given that maintaining face mask use can be not just cost-effective, but even cost saving. The emergence of the omicron variant and the prospect of future variants that might be more transmissible and reduce vaccine effectiveness only increases the value of face masks. FUNDING: The Agency for Healthcare Research and Quality, the National Institute of General Medical Sciences, the National Science Foundation, the National Center for Advancing Translational Sciences, and the City University of New York.


Subject(s)
COVID-19 , Vaccination Coverage , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Masks , Pandemics/prevention & control , SARS-CoV-2
16.
Pediatr Res ; 91(1): 254-260, 2022 01.
Article in English | MEDLINE | ID: mdl-33664477

ABSTRACT

BACKGROUND: Teaching caregivers to respond to normal infant night awakenings in ways other than feeding is a common obesity prevention effort. Models can simulate caregiver feeding behavior while controlling for variables that are difficult to manipulate or measure in real life. METHODS: We developed a virtual infant model representing an infant with an embedded metabolism and his/her daily sleep, awakenings, and feeds from their caregiver each day as the infant aged from 6 to 12 months (recommended age to introduce solids). We then simulated different night feeding interventions and their impact on infant body mass index (BMI). RESULTS: Reducing the likelihood of feeding during normal night wakings from 79% to 50% to 10% lowered infant BMI from the 84th to the 75th to the 62nd percentile by 12 months, respectively, among caregivers who did not adaptively feed (e.g., adjust portion sizes of solid foods with infant growth). Among caregivers who adaptively feed, all scenarios resulted in relatively stable BMI percentiles, and progressively reducing feeding probability by 10% each month showed the least fluctuations. CONCLUSIONS: Reducing night feeding has the potential to impact infant BMI, (e.g., 10% lower probability can reduce BMI by 20 percentile points) especially among caregivers who do not adaptively feed. IMPACT: Teaching caregivers to respond to infant night waking with other soothing behaviors besides feeding has the potential to reduce infant BMI. When reducing the likelihood of feeding during night wakings from 79% to 50% to 10%, infants dropped from the 84th BMI percentile to the 75th to the 62nd by 12 months, respectively, among caregivers who do not adaptively feed. Night-feeding interventions have a greater impact when caregivers do not adaptively feed their infant based on their growth compared to caregivers who do adaptively feed. Night-feeding interventions should be one of the several tools in a multi-component intervention for childhood obesity prevention.


Subject(s)
Body Mass Index , Circadian Rhythm , Feeding Behavior , Caregivers , Humans , Infant , Models, Theoretical
17.
JAMA Netw Open ; 4(8): e2119212, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34347060

ABSTRACT

Importance: Multidrug-resistant organisms (MDROs) can spread across health care facilities in a region. Because of limited resources, certain interventions can be implemented in only some facilities; thus, decision-makers need to evaluate which interventions may be best to implement. Objective: To identify a group of target facilities and assess which MDRO intervention would be best to implement in the Shared Healthcare Intervention to Eliminate Life-threatening Dissemination of MDROs in Orange County, a large regional public health collaborative in Orange County, California. Design, Setting, and Participants: An agent-based model of health care facilities was developed in 2016 to simulate the spread of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE) for 10 years starting in 2010 and to simulate the use of various MDRO interventions for 3 years starting in 2017. All health care facilities (23 hospitals, 5 long-term acute care hospitals, and 74 nursing homes) serving adult inpatients in Orange County, California, were included, and 42 target facilities were identified via network analyses. Exposures: Increasing contact precaution effectiveness, increasing interfacility communication about patients' MDRO status, and performing decolonization using antiseptic bathing soap and a nasal product in a specific group of target facilities. Main Outcomes and Measures: MRSA and CRE prevalence and number of new carriers (ie, transmission events). Results: Compared with continuing infection control measures used in Orange County as of 2017, increasing contact precaution effectiveness from 40% to 64% in 42 target facilities yielded relative reductions of 0.8% (range, 0.5%-1.1%) in MRSA prevalence and 2.4% (range, 0.8%-4.6%) in CRE prevalence in health care facilities countywide after 3 years, averting 761 new MRSA transmission events (95% CI, 756-765 events) and 166 new CRE transmission events (95% CI, 158-174 events). Increasing interfacility communication of patients' MDRO status to 80% in these target facilities produced no changes in the prevalence or transmission of MRDOs. Implementing decolonization procedures (clearance probability: 39% in hospitals, 27% in long-term acute care facilities, and 3% in nursing homes) yielded a relative reduction of 23.7% (range, 23.5%-23.9%) in MRSA prevalence, averting 3515 new transmission events (95% CI, 3509-3521 events). Increasing the effectiveness of antiseptic bathing soap to 48% yielded a relative reduction of 39.9% (range, 38.5%-41.5%) in CRE prevalence, averting 1435 new transmission events (95% CI, 1427-1442 events). Conclusions and Relevance: The findings of this study highlight the ways in which modeling can inform design of regional interventions and suggested that decolonization would be the best strategy for the Shared Healthcare Intervention to Eliminate Life-threatening Dissemination of MDROs in Orange County.


Subject(s)
Bacterial Infections/prevention & control , Bacterial Infections/transmission , Disease Transmission, Infectious/prevention & control , Drug Resistance, Multiple, Bacterial , Practice Guidelines as Topic , Skilled Nursing Facilities/standards , California , Humans
19.
Vaccine ; 39(33): 4598-4610, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34238610

ABSTRACT

INTRODUCTION: Economic evidence on how much it may cost for vaccinators to reach populations is important to plan vaccination programs. Moreover, knowing the incremental costs to reach populations that have traditionally been undervaccinated, especially those hard-to-reach who are facing supply-side barriers to vaccination, is essential to expanding immunization coverage to these populations. METHODS: We conducted a systematic review to identify estimates of costs associated with getting vaccinators to all vaccination sites. We searched PubMed and the Immunization Delivery Cost Catalogue (IDCC) in 2019 for the following costs to vaccinators: (1) training costs; (2) labor costs, per diems, and incentives; (3) identification of vaccine beneficiary location; and (4) travel costs. We assessed if any of these costs were specific to populations that are hard-to-reach for vaccination, based on a framework for examining supply-side barriers to vaccination. RESULTS: We found 19 studies describing average vaccinator training costs at $0.67/person vaccinated or targeted (SD $0.94) and $0.10/dose delivered (SD $0.07). The average cost for vaccinator labor and incentive costs across 29 studies was $2.15/dose (SD $2.08). We identified 13 studies describing intervention costs for a vaccinator to know the location of a beneficiary, with an average cost of $19.69/person (SD $26.65), and six studies describing vaccinator travel costs, with an average cost of $0.07/dose (SD $0.03). Only eight of these studies described hard-to-reach populations for vaccination; two studies examined incremental costs per dose to reach hard-to-reach populations, which were 1.3-2 times higher than the regular costs. The incremental cost to train vaccinators was $0.02/dose, and incremental labor costs for targeting hard-to-reach populations were $0.16-$1.17/dose. CONCLUSION: Additional comparative costing studies are needed to understand the potential differential costs for vaccinators reaching the vaccination sites that serve hard-to-reach populations. This will help immunization program planners and decision-makers better allocate resources to extend vaccination programs.


Subject(s)
Vaccination , Vaccines , Humans , Immunization Programs , Motivation
20.
Vaccine ; 39(32): 4437-4449, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34218959

ABSTRACT

INTRODUCTION: Understanding the costs to increase vaccination demand among under-vaccinated populations, as well as costs incurred by beneficiaries and caregivers for reaching vaccination sites, is essential to improving vaccination coverage. However, there have not been systematic analyses documenting such costs for beneficiaries and caregivers seeking vaccination. METHODS: We searched PubMed, Scopus, and the Immunization Delivery Cost Catalogue (IDCC) in 2019 for the costs for beneficiaries and caregivers to 1) seek and know how to access vaccination (i.e., costs to immunization programs for social mobilization and interventions to increase vaccination demand), 2) take time off from work, chores, or school for vaccination (i.e., productivity costs), and 3) travel to vaccination sites. We assessed if these costs were specific to populations that faced other non-cost barriers, based on a framework for defining hard-to-reach and hard-to-vaccinate populations for vaccination. RESULTS: We found 57 studies describing information, education, and communication (IEC) costs, social mobilization costs, and the costs of interventions to increase vaccination demand, with mean costs per dose at $0.41 (standard deviation (SD) $0.83), $18.86 (SD $50.65) and $28.23 (SD $76.09) in low-, middle-, and high-income countries, respectively. Five studies described productivity losses incurred by beneficiaries and caregivers seeking vaccination ($38.33 per person; SD $14.72; n = 3). We identified six studies on travel costs incurred by beneficiaries and caregivers attending vaccination sites ($11.25 per person; SD $9.54; n = 4). Two studies reported social mobilization costs per dose specific to hard-to-reach populations, which were 2-3.5 times higher than costs for the general population. Eight studies described barriers to vaccination among hard-to-reach populations. CONCLUSION: Social mobilization/IEC costs are well-characterized, but evidence is limited on costs incurred by beneficiaries and caregivers getting to vaccination sites. Understanding the potential incremental costs for populations facing barriers to reach vaccination sites is essential to improving vaccine program financing and planning.


Subject(s)
Caregivers , Immunization Programs , Humans , Immunization , Vaccination , Vaccination Coverage
SELECTION OF CITATIONS
SEARCH DETAIL