Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 6(19): 17769-17777, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37854850

ABSTRACT

Colorectal cancer is the third most common malignancy and the second leading cause of cancer death globally. Multiple studies have linked levels of carcinoembryonic antigen in patient serum to poor disease prognosis. Hence, the ability to detect low levels of carcinoembryonic antigen has applications in earlier disease diagnosis, assessment, and recurrence monitoring. Existing carcinoembryonic antigen detection methods often require multiple reagents, trained operators, or complex procedures. A method alleviating these issues is the lateral flow assay, a paper-based platform that allows the detection and quantification of target analytes in complex mixtures. The tests are rapid, are point-of-care, possess a long shelf life, and can be stored at ambient conditions, making them ideal for use in a range of settings. Although lateral flow assays typically use spherical gold nanoparticles to generate the classic red signal, recent literature has shown that alternate morphologies to spheres can improve the limit of detection. In this work, we report the application of alternative gold nanoparticle morphologies, gold nanotapes (∼35 nm in length) and gold nanopinecones (∼90 nm in diameter), in a lateral flow assay for carcinoembryonic antigen. In a comparative assay, gold nanopinecones exhibited a ∼2× improvement in the limit of detection compared to commercially available spherical gold nanoparticles for the same antibody loading and total gold content, whereas the number of gold nanopinecones in each test was ∼3.2× less. In the fully optimized test, a limit of detection of 14.4 pg/mL was obtained using the gold nanopinecones, representing a 24-fold improvement over the previously reported gold-nanoparticle-based carcinoembryonic antigen lateral flow assay.

2.
J Phys Chem B ; 127(11): 2466-2474, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36917458

ABSTRACT

Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin-streptavidin and maleimide-PDP chemistries. Comparatively, the use of DNA-lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol-DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.


Subject(s)
Liposomes , Microbubbles , DNA, Complementary , Polyethylene Glycols , Lipid Bilayers , Cholesterol
3.
Langmuir ; 38(45): 13943-13954, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36322191

ABSTRACT

Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1-10 µm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 µm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.


Subject(s)
Liposomes , Microbubbles , Drug Delivery Systems/methods , Ultrasonography/methods , Contrast Media , Lipids
4.
Pharmaceutics ; 14(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335995

ABSTRACT

Advanced drug delivery systems, such as ultrasound-mediated drug delivery, show great promise for increasing the therapeutic index. Improvements in delivery by altering the ultrasound parameters have been studied heavily in vitro but relatively little in vivo. Here, the same therapeutic microbubble and tumour type are used to determine whether altering ultrasound parameters can improve drug delivery. Liposomes were loaded with SN38 and attached via avidin: biotin linkages to microbubbles. The whole structure was targeted to the tumour vasculature by the addition of anti-vascular endothelial growth factor receptor 2 antibodies. Tumour drug delivery and metabolism were quantified in SW480 xenografts after application of an ultrasound trigger to the tumour region. Increasing the trigger duration from 5 s to 2 min or increasing the number of 5 s triggers did not improve drug delivery, nor did changing to a chirp trigger designed to stimulate a greater proportion of the microbubble population, although this did show that the short tone trigger resulted in greater release of free SN38. Examination of ultrasound triggers in vivo to improve drug delivery is justified as there are multiple mechanisms at play that may not allow direct translation from in vitro findings. In this setting, a short tone burst gives the best ultrasound parameters for tumoural drug delivery.

5.
Rev Sci Instrum ; 92(7): 074105, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34340422

ABSTRACT

Microbubbles (MBs) have a multitude of applications including as contrast agents in ultrasound imaging and as therapeutic drug delivery vehicles, with further scope for combining their diagnostic and therapeutic properties (known as theranostics). MBs used clinically are commonly made by mechanical agitation or sonication methods, which offer little control over population size and dispersity. Furthermore, clinically used MBs are yet to be used therapeutically and further research is needed to develop these theranostic agents. In this paper, we present our MB production instrument "Horizon," which is a robust, portable, and user-friendly instrument, integrating the key components for producing MBs using microfluidic flow-focusing devices. In addition, we present the system design and specifications of Horizon and the optimized protocols that have so far been used to produce MBs with specific properties. These include MBs with tailored size and low dispersity (monodisperse); MBs with a diameter of ∼2 µm, which are more disperse but also produced in higher concentration; nanobubbles with diameters of 100-600 nm; and therapeutic MBs with drug payloads for targeted delivery. Multiplexed chips were able to improve production rates up to 16-fold while maintaining production stability. This work shows that Horizon is a versatile instrument with potential for mass production and use across many research facilities, which could begin to bridge the gap between therapeutic MB research and clinical use.


Subject(s)
Microbubbles , Microfluidics , Contrast Media , Lab-On-A-Chip Devices , Ultrasonography
6.
Small ; 17(13): e2006797, 2021 04.
Article in English | MEDLINE | ID: mdl-33682366

ABSTRACT

Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface-enhanced Raman spectroscopy, or using pH-dependent ζ-potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50  > 200 µg mL-1 ) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near-infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications.


Subject(s)
Gold , Nanotubes , Cetrimonium , Phospholipids , Spectrum Analysis, Raman
7.
J Control Release ; 326: 13-24, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32562855

ABSTRACT

Drug penetration into solid tumours remains a major challenge in the effective treatment of cancer. Microbubble (MB) mediated sonoporation offers a potential solution to this by enhancing the uptake of drugs into cells. Additionally, in using an ultrasound (US) trigger, drug delivery can be localised to the tumour, thus reducing the off-site toxicity associated with systemic delivery. The majority of in vitro studies involving the observation of MB-enhanced drug efficacy have been conducted on 2D monolayer cell cultures, which are known to be poor models for in vivo tumours. 3D spheroid cultures allow for the production of multicellular cultures complete with extracellular matrix (ECM) components. These cultures effectively recreate many of the physiological features of the tumour microenvironment and have been shown to be far superior to previous 2D monolayer models. However, spheroids are typically handled in well-plates in which the fluid environment is static, limiting the physiological relevance of the model. The combination of 3D cultures and microfluidics would allow for the production of a dynamic system in which spheroids are subjected to in vivo like fluid flow and shear stresses. This study presents a microfluidic device containing an array of spheroid traps, into which multiple pre-grown colorectal cancer (CRC) spheroids were loaded. Reservoirs interfaced with the chip use hydrostatic pressure to passively drive flow through the system and subject spheroids to capillary like flow velocities. The use of reservoirs also enabled multiple chips to be run in parallel, allowing for the screening of multiple therapeutic treatments (n = 690 total spheroids analysed). This microfluidic platform was used to investigate MB enhanced drug delivery and showed that co-delivery of 3 µM doxorubicin (DOX) + MB + US reduced spheroid viability to 48 ± 2%, compared to 75 ± 5% observed with 3 µM DOX alone. Delivery of drug loaded MBs (DLMBs), in which DOX-loaded liposomes (DOX-LS) were conjugated to MBs, reduced spheroid viability to 62 ± 3%, a decrease compared to the 75 ± 3% viability observed with DOX-LS in the absence of MBs + US.


Subject(s)
Microbubbles , Neoplasms , Cell Culture Techniques , Cell Line, Tumor , Humans , Microfluidics , Neoplasms/drug therapy , Spheroids, Cellular , Tumor Microenvironment
8.
ACS Appl Mater Interfaces ; 12(26): 29085-29093, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32501014

ABSTRACT

Because of their size (1-10 µm), microbubble-based drug delivery agents suffer from confinement to the vasculature, limiting tumor penetration and potentially reducing the drug efficacy. Nanobubbles (NBs) have emerged as promising candidates for ultrasound-triggered drug delivery because of their small size, allowing drug delivery complexes to take advantage of the enhanced permeability and retention effect. In this study, we describe a simple method for production of nested-nanobubbles (Nested-NBs) by encapsulation of NBs (∼100 nm) within drug-loaded liposomes. This method combines the efficient and well-established drug-loading capabilities of liposomes while utilizing NBs as an acoustic trigger for drug release. Encapsulation was characterized using transmission electron microscopy with an encapsulation efficiency of 22 ± 2%. Nested-NBs demonstrated echogenicity using diagnostic B-mode imaging, and acoustic emissions were monitored during high-intensity focused ultrasound (HIFU) in addition to monitoring of model drug release. Results showed that although the encapsulated NBs were destroyed by pulsed HIFU [peak negative pressure (PNP) 1.54-4.83 MPa], signified by loss of echogenicity and detection of inertial cavitation, no model drug release was observed. Changing modality to continuous wave (CW) HIFU produced release across a range of PNPs (2.01-3.90 MPa), likely because of a synergistic effect of mechanical and increased thermal stimuli. Because of this, we predict that our NBs contain a mixed population of both gaseous and liquid core particles, which upon CW HIFU undergo rapid phase conversion, triggering liposomal drug release. This hypothesis was investigated using previously described models to predict the existence of droplets and their phase change potential and the ability of this phase change to induce liposomal drug release.


Subject(s)
Drug Delivery Systems/methods , Liposomes/chemistry , Microbubbles , Animals , Cell Line, Tumor , Drug Liberation , Humans
9.
ACS Appl Bio Mater ; 3(11): 7840-7848, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019524

ABSTRACT

Microbubbles (MBs) are widely used as contrast enhancement agents for ultrasound imaging and have the potential to enhance therapeutic delivery to diseases such as cancer. Yet, they are only stable in solution for a few hours to days after production, which limits their potential application. Freeze-drying provides long-term storage, ease of transport, and consistency in structure and composition, thereby facilitating their use in clinical settings. Therapeutic microbubbles (thMBs) consisting of MBs with attached therapeutic payload potentially face even greater issues for production, stability, and well-defined drug delivery. The ability to freeze-dry thMBs represents an important step for their translation to the clinic. Here, we show that it is possible to freeze-dry and reconstitute thMBs that consist of lipid-coated MBs with an attached liposomal payload. The thMBs were produced microfluidically, and the liposomes contained either calcein, as a model drug, or gemcitabine. The results show that drug-loaded thMBs can be freeze-dried and stored for at least 6 months. Upon reconstitution, they maintain their structural integrity and drug loading. Furthermore, we show that their in vivo echogenicity is maintained post-freeze-drying. Depending on the gas used in the original bubbles, we also demonstrate that the approach provides a method to exchange the gas core to allow the formulation of thMBs with different gases for combination therapies or improved drug efficacy. Importantly, this work provides an important route for the facile off-site production of thMBs that can be reformulated at the point of care.

SELECTION OF CITATIONS
SEARCH DETAIL
...