Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Res Microbiol ; 175(5-6): 104202, 2024.
Article in English | MEDLINE | ID: mdl-38582389

ABSTRACT

The Burkholderia cepacia complex (Bcc) is a group of increasingly multi-drug resistant opportunistic bacteria. This resistance is driven through a combination of intrinsic factors and the carriage of a broad range of conjugative plasmids harbouring virulence determinants. Therefore, novel treatments are required to treat and prevent further spread of these virulence determinants. In the search for phages infective for clinical Bcc isolates, CSP1 phage, a PRD1-like phage was isolated. CSP1 phage was found to require pilus machinery commonly encoded on conjugative plasmids to facilitate infection of Gram-negative bacteria genera including Escherichia and Pseudomonas. Whole genome sequencing and characterisation of one of the clinical Burkholderia isolates revealed it to be Burkholderia contaminans. B. contaminans 5080 was found to contain a genome of over 8 Mbp encoding multiple intrinsic resistance factors, such as efflux pump systems, but more interestingly, carried three novel plasmids encoding multiple putative virulence factors for increased host fitness, including antimicrobial resistance. Even though PRD1-like phages are broad host range, their use in novel antimicrobial treatments shouldn't be dismissed, as the dissemination potential of conjugative plasmids is extensive. Continued survey of clinical bacterial strains is also key to understanding the spread of antimicrobial resistance determinants and plasmid evolution.


Subject(s)
Bacteriophages , Burkholderia cepacia complex , Plasmids , Plasmids/genetics , Burkholderia cepacia complex/virology , Burkholderia cepacia complex/genetics , Burkholderia cepacia complex/isolation & purification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Host Specificity , Whole Genome Sequencing , Conjugation, Genetic , Virulence Factors/genetics , Burkholderia Infections/microbiology , Humans , Genome, Viral , Genome, Bacterial , Burkholderia/genetics , Burkholderia/virology
2.
Environ Microbiol ; 25(12): 3387-3405, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37915109

ABSTRACT

In this study, we compared the genomes of three metal-resistant bacteria isolated from mercury-contaminated soil. We identified diverse and novel MGEs with evidence of multiple LGT events shaping their genomic structure and heavy metal resistance. Among the three metal-resistant strains, Sphingobium sp SA2 and Sphingopyxis sp SE2 were resistant to multiple metals including mercury, cadmium, copper, zinc and lead. Pseudoxanthomonas sp SE1 showed resistance to mercury only. Whole genome sequencing by Illumina and Oxford Nanopore technologies was undertaken to obtain comprehensive genomic data. The Sphingobium and Sphingopyxis strains contained multiple chromosomes and plasmids, whereas the Pseudoxanthomonas strain contained one circular chromosome. Consistent with their metal resistance profiles, the strains of Sphingobium and Sphingopyxis contained a higher quantity of diverse metal resistance genes across their chromosomes and plasmids compared to the single-metal resistant Pseudoxanthomonas SE1. In all three strains, metal resistance genes were principally associated with various novel MGEs including genomic islands (GIs), integrative conjugative elements (ICEs), transposons, insertion sequences (IS), recombinase in trio (RIT) elements and group II introns, indicating their importance in facilitating metal resistance adaptation in a contaminated environment. In the Pseudoxanthomonas strain, metal resistance regions were largely situated on a GI. The chromosomes of the strains of Sphingobium and Sphingopyxis contained multiple metal resistance regions, which were likely acquired by several GIs, ICEs, numerous IS elements, several Tn3 family transposons and RIT elements. Two of the plasmids of Sphingobium were impacted by Tn3 family transposons and ISs likely integrating metal resistance genes. The two plasmids of Sphingopyxis harboured transposons, IS elements, an RIT element and a group II intron. This study provides a comprehensive annotation of complex genomic regions of metal resistance associated with novel MGEs. It highlights the critical importance of LGT in the evolution of metal resistance of bacteria in contaminated environments.


Subject(s)
DNA Transposable Elements , Mercury , DNA Transposable Elements/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Genomic Islands , Bacteria/genetics
3.
BMC Genom Data ; 24(1): 49, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658299

ABSTRACT

OBJECTIVES: Providencia is a genus of gram-negative bacteria within the order Enterobacterales, closely related to Proteus and Morganella. While ubiquitous in the environment, some species of Providencia, such as P. rettgeri and P. stuartii, are considered emerging nosocomial pathogens and have been implicated in urinary tract infection, gastrointestinal illness, and travelers' diarrhea. Given their intrinsic resistance to many commonly used antibiotics, this study aimed to isolate and sequence bacteriophages targeting a clinical P. rettgeri isolate. DATA DESCRIPTION: Here we report the complete genome sequence of three novel Providencia phages, PibeRecoleta, Stilesk and PatoteraRojo, which were isolated against a clinical P. rettgeri strain sourced from a patient in a metropolitan hospital in Victoria, Australia. The three phages contain dsDNA genomes between 60.7 and 60.9 kb in size and are predicted to encode between 72 and 73 proteins. These three new phages, which share high genomic similarity to two other Providencia phages previously isolated on P. stuartii, serve as important resources in our understanding about Providencia bacteriophages and the potential for future phage-based biotherapies.


Subject(s)
Bacteriophages , Dysentery , Humans , Diarrhea/genetics , Diarrhea/therapy , Providencia/genetics , Travel , Bacteriophages/genetics , Hospitals, Urban , Victoria
4.
mSphere ; 8(4): e0023323, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37366629

ABSTRACT

Nonsense-mediated decay (NMD) is a conserved mRNA quality control process that eliminates transcripts bearing a premature termination codon. In addition to its role in removing erroneous transcripts, NMD is involved in post-transcriptional regulation of gene expression via programmed intron retention in metazoans. The apicomplexan parasite Plasmodium falciparum shows relatively high levels of intron retention, but it is unclear whether these variant transcripts are functional targets of NMD. In this study, we use CRISPR-Cas9 to disrupt and epitope-tag the P. falciparum orthologs of two core NMD components: PfUPF1 (PF3D7_1005500) and PfUPF2 (PF3D7_0925800). We localize both PfUPF1 and PfUPF2 to puncta within the parasite cytoplasm and show that these proteins interact with each other and other mRNA-binding proteins. Using RNA-seq, we find that although these core NMD orthologs are expressed and interact in P. falciparum, they are not required for degradation of nonsense transcripts. Furthermore, our work suggests that the majority of intron retention in P. falciparum has no functional role and that NMD is not required for parasite growth ex vivo. IMPORTANCE In many organisms, the process of destroying nonsense transcripts is dependent on a small set of highly conserved proteins. We show that in the malaria parasite, these proteins do not impact the abundance of nonsense transcripts. Furthermore, we demonstrate efficient CRISPR-Cas9 editing of the malaria parasite using commercial Cas9 nuclease and synthetic guide RNA, streamlining genomic modifications in this genetically intractable organism.


Subject(s)
Malaria , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Nonsense Mediated mRNA Decay , Gene Expression Regulation , RNA, Messenger/genetics
5.
Microbiol Spectr ; 11(3): e0533222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199610

ABSTRACT

The Burkholderia cepacia complex is a group of opportunistic pathogens that cause both severe acute and chronic respiratory infections. Due to their large genomes containing multiple intrinsic and acquired antimicrobial resistance mechanisms, treatment is often difficult and prolonged. One alternative to traditional antibiotics for treatment of bacterial infections is bacteriophages. Therefore, the characterization of bacteriophages infective for the Burkholderia cepacia complex is critical to determine their suitability for any future use. Here, we describe the isolation and characterization of novel phage, CSP3, infective against a clinical isolate of Burkholderia contaminans. CSP3 is a new member of the Lessievirus genus that targets various Burkholderia cepacia complex organisms. Single nucleotide polymorphism (SNP) analysis of CSP3-resistant B. contaminans showed that mutations to the O-antigen ligase gene, waaL, consequently inhibited CSP3 infection. This mutant phenotype is predicted to result in the loss of cell surface O-antigen, contrary to a related phage that requires the inner core of the lipopolysaccharide for infection. Additionally, liquid infection assays showed that CSP3 provides suppression of B. contaminans growth for up to 14 h. Despite the inclusion of genes that are typical of the phage lysogenic life cycle, we saw no evidence of CSP3's ability to lysogenize. Continuation of phage isolation and characterization is crucial in developing large and diverse phage banks for global usage in cases of antibiotic-resistant bacterial infections. IMPORTANCE Amid the global antibiotic resistance crisis, novel antimicrobials are needed to treat problematic bacterial infections, including those from the Burkholderia cepacia complex. One such alternative is the use of bacteriophages; however, a lot is still unknown about their biology. Bacteriophage characterization studies are of high importance for building phage banks, as future work in developing treatments such as phage cocktails should require well-characterized phages. Here, we report the isolation and characterization of a novel Burkholderia contaminans phage that requires the O-antigen for infection, a distinct phenotype seen among other related phages. Our findings presented in this article expand on the ever-evolving phage biology field, uncovering unique phage-host relationships and mechanisms of infection.


Subject(s)
Bacteriophages , Burkholderia cepacia complex , Burkholderia , Bacteriophages/genetics , O Antigens/analysis , Burkholderia cepacia complex/genetics , Burkholderia/genetics
6.
Viruses ; 15(2)2023 02 11.
Article in English | MEDLINE | ID: mdl-36851720

ABSTRACT

Bacteriophages, viruses that infect bacteria, are currently receiving significant attention amid an ever-growing global antibiotic resistance crisis. In tandem, a surge in the availability and affordability of next-generation and third-generation sequencing technologies has driven the deposition of a wealth of phage sequence data. Here, we have isolated a novel Escherichia phage, YF01, from a municipal wastewater treatment plant in Yokohama, Japan. We demonstrate that the YF01 phage shares a high similarity to a collection of thirty-five Escherichia and Shigella phages found in public databases, six of which have been previously classified into the Kuravirus genus by the International Committee on Taxonomy of Viruses (ICTV). Using modern phylogenetic approaches, we demonstrate that an expansion and reshaping of the current six-membered Kuravirus genus is required to accommodate all thirty-six member phages. Ultimately, we propose the creation of three additional genera, Vellorevirus, Jinjuvirus, and Yesanvirus, which will allow a more organized approach to the addition of future Kuravirus-like phages.


Subject(s)
Bacteriophages , Podoviridae , Bacteriophages/genetics , Japan , Phylogeny , Databases, Factual
7.
BMC Genomics ; 23(1): 777, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443683

ABSTRACT

BACKGROUND: Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS: We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS: Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.


Subject(s)
Bacillus Phages , Bacillus , Humans , Bacillus/genetics , Soil , Phylogeny , Bacillus Phages/genetics , Recombinases , Tyrosine
8.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36256446

ABSTRACT

The taxonomic status of two Gordonia strains, designated BEN371 and CON9T, isolated from stable foams on activated sludge plants was the subject of a polyphasic study which also included the type strains of Gordonia species and three authenticated Gordonia amarae strains recovered from such foams. Phylogenetic analyses of 16S rRNA gene sequences showed that these isolates formed a compact cluster suggesting a well-supported lineage together with a second branch containing the G. amarae strains. A phylogenomic tree based on sequences of 92 core genes extracted from whole genome sequences of the isolates, the G. amarae strains and Gordonia type strains confirmed the assignment of the isolates and the G. amarae strains to separate but closely associated lineages. Average nucleotide index (ANI) and digital DNA-DNA hybridisation (dDDH) similarities showed that BEN371 and CON9T belonged to the same species and had chemotaxonomic and morphological features consistent with their assignment to the genus Gordonia. The isolates and the G. amarae strains were distinguished using a range of phenotypic features and by low ANI and dDDH values of 84.2 and 27.0 %, respectively. These data supplemented with associated genome characteristics show that BEN371 and CON9T represent a novel species of the genus Gordonia. The name proposed for members of this taxon is Gordonia pseudamarae sp. nov. with isolate CON9T (=DSM 43602T=JCM 35249T) as the type strain.


Subject(s)
Actinobacteria , Gordonia Bacterium , Water Purification , Sewage/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Fatty Acids/chemistry , Nucleotides
9.
Microbiol Spectr ; 10(4): e0152422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862970

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) is a human pathogen of global importance, classified into serotypes based on the type of capsular polysaccharide produced. Serotyping of pneumococci is essential for disease surveillance and vaccine impact measurement. However, the accuracy of serotyping methods can be affected by previously undiscovered variants. Previous studies have identified variants of serotype 14, a highly invasive serotype included in all licensed vaccine formulations. However, the potential of these variants to influence serotyping accuracy and evade vaccine-induced protection has not been investigated. In this study, we screened 1,386 nasopharyngeal swabs from children hospitalized with acute respiratory infection in Papua New Guinea for pneumococci. Swabs containing pneumococci (n = 1,226) were serotyped by microarray to identify pneumococci with a divergent serotype 14 capsule locus. Three serotype 14 variants ('14-like') were isolated and characterized further. The serotyping results of these isolates using molecular methods varied depending on the method, with 3/3 typing as nontypeable (PneumoCaT), 3/3 typing as serotype 14 (seroBA), and 2/3 typing as serotype 14 (SeroCall and quantitative PCR). All three isolates were nontypeable by phenotypic methods (Quellung and latex agglutination), indicating the absence of capsule. Illumina and nanopore sequencing were employed to examine their capsule loci and revealed unique mutations. Lastly, when incubated with sera from vaccinated individuals, the 14-like isolates evaded serotype-specific opsonophagocytic killing. Our study highlights the need for phenotypic testing to validate serotyping data derived from molecular methods. The convergent evolution of capsule loss underscores the importance of studying pneumococcal population biology to monitor the emergence of pneumococci capable of vaccine escape, globally. IMPORTANCE Pneumococcus is a pathogen of major public health importance. Current vaccines have limited valency, targeting a subset (up to 20) of the more than 100 capsule types (serotypes). Precise serotyping methods are therefore essential to avoid mistyping, which can reduce the accuracy of data used to inform decisions around vaccine introduction and/or maintenance of national vaccination programs. In this study, we examine a variant of serotype 14 (14-like), a virulent serotype present in all currently licensed vaccine formulations. Although these 14-like pneumococci no longer produce a serotype 14 capsule, widely used molecular methods can mistype them as serotype 14. Importantly, we show that 14-like pneumococci can evade opsonophagocytic killing mediated by vaccination. Despite the high accuracy of molecular methods for serotyping, our study reemphasizes their limitations. This is particularly relevant in situations where nonvaccine type pneumococci (e.g., the 14-likes in this study) could potentially be misidentified as a vaccine type (e.g., serotype 14).


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Child , Humans , Papua New Guinea/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Serogroup , Serotyping/methods , Streptococcus pneumoniae/genetics
10.
Microbiome ; 10(1): 12, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35074003

ABSTRACT

BACKGROUND: Understanding how elevated atmospheric CO2 (eCO2) impacts on phosphorus (P) transformation in plant rhizosphere is critical for maintaining ecological sustainability in response to climate change, especially in agricultural systems where soil P availability is low. METHODS: This study used rhizoboxes to physically separate rhizosphere regions (plant root-soil interface) into 1.5-mm segments. Wheat plants were grown in rhizoboxes under eCO2 (800 ppm) and ambient CO2 (400 ppm) in two farming soils, Chromosol and Vertosol, supplemented with phytate (organic P). Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. Amplicon sequencing was performed on the rhizosphere-associated microbial community in the root-growth zone, and 1.5 mm and 3 mm away from the root. RESULTS: Elevated CO2 accelerated the mineralization of phytate in the rhizosphere zones, which corresponded with increases in plant-derived 13C enrichment and the relative abundances of discreet phylogenetic clades containing Bacteroidetes and Gemmatimonadetes in the bacterial community, and Funneliformis affiliated to arbuscular mycorrhizas in the fungal community. Although the amplicon sequence variants (ASVs) associated the stimulation of phytate mineralization under eCO2 differed between the two soils, these ASVs belonged to the same phyla associated with phytase and phosphatase production. The symbiotic mycorrhizas in the rhizosphere of wheat under eCO2 benefited from increased plant C supply and increased P access from soil. Further supportive evidence was the eCO2-induced increase in the genetic pool expressing the pentose phosphate pathway, which is the central pathway for biosynthesis of RNA/DNA precursors. CONCLUSIONS: The results suggested that an increased belowground carbon flow under eCO2 stimulated bacterial growth, changing community composition in favor of phylotypes capable of degrading aromatic P compounds. It is proposed that energy investments by bacteria into anabolic processes increase under eCO2 to level microbial P-use efficiencies and that synergies with symbiotic mycorrhizas further enhance the competition for and mineralization of organic P. Video Abstract.


Subject(s)
Microbiota , Rhizosphere , Carbon Dioxide/metabolism , Microbiota/genetics , Phosphorus , Phylogeny , Soil Microbiology , Triticum/metabolism
11.
PLoS One ; 16(9): e0257102, 2021.
Article in English | MEDLINE | ID: mdl-34492081

ABSTRACT

The bacterial genus Klebsiella includes the closely related species K. michiganensis, K. oxytoca and K. pneumoniae, which are capable of causing severe disease in humans. In this report we describe the isolation, genomic and functional characterisation of the lytic bacteriophage KMI8 specific for K. michiganensis. KMI8 belongs to the family Drexlerviridae, and has a novel genome which shares very little homology (71.89% identity over a query cover of only 8%) with that of its closest related bacteriophages (Klebsiella bacteriophage LF20 (MW417503.1); Klebsiella bacteriophage 066039 (MW042802.1). KMI8, which possess a putative endosialidase (depolymerase) enzyme, was shown to be capable of degrading mono-biofilms of a strain of K. michiganensis that carried the polysaccharide capsule KL70 locus. This is the first report of a lytic bacteriophage for K. michiganensis, which is capable of breaking down a biofilm of this species.


Subject(s)
Bacteriophages/physiology , Biofilms , Klebsiella/virology , Bacterial Capsules/metabolism , Bacteriophages/growth & development , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Codon/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Host Specificity , Klebsiella/genetics , Microbial Viability , Open Reading Frames/genetics , Phylogeny , Proteomics
12.
Microbiol Resour Announc ; 10(35): e0047821, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34472973

ABSTRACT

Enterobacter asburiae NCR1 is a plant growth-promoting rhizobacterium isolated from the rhizosphere of Carpobrotus rossii. We report the draft genome sequence of E. asburiae strain NCR1, which revealed many genes facilitating beneficial interactions with plant hosts.

13.
Viruses ; 13(8)2021 08 06.
Article in English | MEDLINE | ID: mdl-34452423

ABSTRACT

Bacillus is a highly diverse genus containing over 200 species that can be problematic in both industrial and medical settings. This is mainly attributed to Bacillus sp. being intrinsically resistant to an array of antimicrobial compounds, hence alternative treatment options are needed. In this study, two bacteriophages, PumA1 and PumA2 were isolated and characterized. Genome nucleotide analysis identified the two phages as novel at the DNA sequence level but contained proteins similar to phi29 and other related phages. Whole genome phylogenetic investigation of 34 phi29-like phages resulted in the formation of seven clusters that aligned with recent ICTV classifications. PumA1 and PumA2 share high genetic mosaicism and form a genus with another phage named WhyPhy, more recently isolated from the United States of America. The three phages within this cluster are the only candidates to infect B. pumilus. Sequence analysis of B. pumilus phage resistant mutants revealed that PumA1 and PumA2 require polymerized and peptidoglycan bound wall teichoic acid (WTA) for their infection. Bacteriophage classification is continuously evolving with the increasing phages' sequences in public databases. Understanding phage evolution by utilizing a combination of phylogenetic approaches provides invaluable information as phages become legitimate alternatives in both human health and industrial processes.


Subject(s)
Bacillus Phages/classification , Bacillus Phages/genetics , Bacillus pumilus/virology , Genome, Viral , Phylogeny , Bacillus Phages/isolation & purification , DNA, Viral/genetics , Evolution, Molecular , Genetic Variation , Mosaicism , Sequence Analysis, DNA
14.
Microbiol Resour Announc ; 10(34): e0048721, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34435860

ABSTRACT

Enterobacter mori is an important plant pathogen. Here, we report the draft genome sequence of the plant-associated strain Enterobacter mori NSE2, which was found to harbor genes for promotive and pathogenic interactions with plants.

15.
Front Microbiol ; 12: 650849, 2021.
Article in English | MEDLINE | ID: mdl-33868210

ABSTRACT

Enterococcus faecalis is an opportunistic pathogen in the gut microbiota that's associated with a range of difficult to treat nosocomial infections. It is also known to be associated with some colorectal cancers. Its resistance to a range of antibiotics and capacity to form biofilms increase its virulence. Unlike antibiotics, bacteriophages are capable of disrupting biofilms which are key in the pathogenesis of diseases such as UTIs and some cancers. In this study, bacteriophage EFA1, lytic against E. faecalis, was isolated and its genome fully sequenced and analyzed in silico. Electron microscopy images revealed EFA1 to be a Siphovirus. The bacteriophage was functionally assessed and shown to disrupt E. faecalis biofilms as well as modulate the growth stimulatory effects of E. faecalis in a HCT116 colon cancer cell co-culture system, possibly via the effects of ROS. The potential exists for further testing of bacteriophage EFA1 in these systems as well as in vivo models.

16.
Nat Microbiol ; 6(6): 703-711, 2021 06.
Article in English | MEDLINE | ID: mdl-33927381

ABSTRACT

Many wastewater treatment plants around the world suffer from the operational problem of foaming. This is characterized by a persistent stable foam that forms on the aeration basin, which reduces effluent quality. The foam is often stabilized by a highly hydrophobic group of Actinobacteria known as the Mycolata1. Gordonia amarae is one of the most frequently reported foaming members1. With no currently reliable method for treating foams, phage biocontrol has been suggested as an attractive treatment strategy2. Phages isolated from related foaming bacteria can destabilize foams at the laboratory scale3,4; however, no phage has been isolated that lyses G. amarae. Here, we assemble the complete genomes of G. amarae and a previously undescribed species, Gordonia pseudoamarae, to examine mechanisms that encourage stable foam production. We show that both of these species are recalcitrant to phage infection via a number of antiviral mechanisms including restriction, CRISPR-Cas and bacteriophage exclusion. Instead, we isolate and cocultivate an environmental ultrasmall epiparasitic bacterium from the phylum Saccharibacteria that lyses G. amarae and G. pseudoamarae and several other Mycolata commonly associated with wastewater foams. The application of this parasitic bacterium, 'Candidatus Mycosynbacter amalyticus', may represent a promising strategy for the biocontrol of bacteria responsible for stabilizing wastewater foams.


Subject(s)
Actinobacteria/physiology , Bacteria/growth & development , Bacteria/isolation & purification , Wastewater/microbiology , Actinobacteria/virology , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Bacteriophages/physiology , Genome, Bacterial , Phylogeny , Wastewater/chemistry
17.
Viruses ; 12(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33049935

ABSTRACT

Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia-the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.


Subject(s)
Achromobacter/virology , Lysogeny/genetics , Pneumonia, Bacterial/microbiology , Siphoviridae/genetics , Siphoviridae/isolation & purification , Cystic Fibrosis/microbiology , DNA, Viral/genetics , Genome, Viral/genetics , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Host Specificity/physiology , Humans , Lung/microbiology , Lung/pathology , Siphoviridae/classification , Virus Replication/physiology
18.
Appl Microbiol Biotechnol ; 104(22): 9839-9852, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32974744

ABSTRACT

Amplicon sequence fingerprinting of communities in activated sludge systems have provided data revealing the true level of their microbial biodiversity and led to suggestions of which intrinsic and extrinsic parameters might affect the dynamics of community assemblage. Most studies have been performed in China and Denmark, and comparatively little information is available for plants in other countries. This study looked at how the communities of three plants in Victoria, Australia, treating domestic sewage changed with season. All were designed to remove nitrogen microbiologically. They were all located close together to minimise any influence that climate and demographics might have on their operation, and samples were taken at weekly intervals for 12 months. 16S rRNA amplicon sequencing revealed that each plant community was distinctively different to the others and changed over the 12-month sampling period. Many of the factors suggested in other similar studies to be important in determining community composition in activated sludge systems could not explain the changes noted here. The most likely influential factors were considered to be temperature and influent composition reflecting changes in dietary intake by the populations served by each plant, since in all three, the most noticeable changes corresponded to seasonal shifts. KEY POINTS: • Monitoring microbial communities in 3 wastewater treatment plants removing nitrogen • Temperature is the most influential factor in dynamic changes in community composition.


Subject(s)
Bioreactors , Nitrogen , Water Purification , Bacteria/genetics , China , Denitrification , RNA, Ribosomal, 16S/genetics , Sewage , Victoria , Waste Disposal, Fluid , Wastewater
19.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32273350

ABSTRACT

We report the complete genome sequence of Moraxella osloensis strain YV1, which was isolated from a wastewater treatment plant in Australia. The YV1 genome comprises a 2,615,801-bp chromosome and four plasmids. Moraxella osloensis strain YV1 displays the distinctive morphology of Eikelboom morphotype 1863.

20.
mBio ; 11(2)2020 03 17.
Article in English | MEDLINE | ID: mdl-32184257

ABSTRACT

The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer's clefts. We developed a method for efficient enrichment of Maurer's clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer's cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer's cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer's clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer's clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer's cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. ΔGEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile.IMPORTANCE The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer's clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence.


Subject(s)
Erythrocyte Membrane/metabolism , Erythrocytes/cytology , Host-Parasite Interactions , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Carrier Proteins/metabolism , Cell Line , Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Humans , Membrane Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Protein Interaction Maps , Protein Transport , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...