Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
bioRxiv ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38562735

Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. The complex, consisting of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, is known to impact virulence and disease outcomes. However, FAK's structure and enzymatic mechanism remain poorly understood. Here, we used a combination of modeling, biochemical, and cell-based approaches to establish critical details of FAK activity. Solved structures of the apo and ligand-bound FakA kinase domain captured the protein state through ATP hydrolysis. Additionally, targeted mutagenesis of an understudied FakA Middle domain identified critical residues within a metal-binding pocket that contribute to FakA dimer stability and protein function. Regarding the complex, we demonstrated nanomolar affinity between FakA and FakB and generated computational models of the complex's quaternary structure. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.

2.
Proteins ; 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38372168

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.

3.
bioRxiv ; 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38293217

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.

4.
Proteins ; 92(4): 554-566, 2024 Apr.
Article En | MEDLINE | ID: mdl-38041394

NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.


Cytochromes b , NAD , Animals , Humans , Cytochrome-B(5) Reductase/chemistry , Oxidoreductases , Heme/chemistry
5.
Brain ; 147(5): 1710-1725, 2024 May 03.
Article En | MEDLINE | ID: mdl-38146639

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Alzheimer Disease , Isoindoles , Mitochondria , Organoselenium Compounds , Peptidyl-Prolyl Isomerase F , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptidyl-Prolyl Isomerase F/metabolism , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Humans , Cognition/drug effects , Azoles/pharmacology , Azoles/therapeutic use , Cyclophilins/metabolism , Cyclophilins/antagonists & inhibitors , Mice, Transgenic , Mice, Inbred C57BL , Male , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
6.
Toxins (Basel) ; 15(7)2023 06 25.
Article En | MEDLINE | ID: mdl-37505680

Protonation of key histidine residues has been long implicated in the acid-mediated cellular action of the diphtheria toxin translocation (T-) domain, responsible for the delivery of the catalytic domain into the cell. Here, we use a combination of computational (constant-pH Molecular Dynamics simulations) and experimental (NMR, circular dichroism, and fluorescence spectroscopy along with the X-ray crystallography) approaches to characterize the initial stages of conformational change happening in solution in the wild-type T-domain and in the H223Q/H257Q double mutant. This replacement suppresses the acid-induced transition, resulting in the retention of a more stable protein structure in solutions at pH 5.5 and, consequently, in reduced membrane-disrupting activity. Here, for the first time, we report the pKa values of the histidine residues of the T-domain, measured by NMR-monitored pH titrations. Most peaks in the histidine side chain spectral region are titrated with pKas ranging from 6.2 to 6.8. However, the two most up-field peaks display little change down to pH 6, which is a limiting pH for this protein in solution at concentrations required for NMR. These peaks are absent in the double mutant, suggesting they belong to H223 and H257. The constant-pH simulations indicate that for the T-domain in solution, the pKa values for histidine residues range from 3.0 to 6.5, with those most difficult to protonate being H251 and H257. Taken together, our experimental and computational data demonstrate that previously suggested cooperative protonation of all six histidines in the T-domain does not occur.


Diphtheria Toxin , Histidine , Diphtheria Toxin/chemistry , Histidine/chemistry , Molecular Dynamics Simulation , Catalytic Domain , Protein Transport , Hydrogen-Ion Concentration , Protein Conformation
7.
Arch Biochem Biophys ; 742: 109612, 2023 07 01.
Article En | MEDLINE | ID: mdl-37146865

Histamine dehydrogenase from the gram-negative bacterium Rhizobium sp. 4-9 (HaDHR) is a member of a small family of dehydrogenases containing a covalently attached FMN, and the only member so far identified to date that does not exhibit substrate inhibition. In this study, we present the 2.1 Å resolution crystal structure of HaDHR. This new structure allowed for the identification of the internal electron transfer pathway to abiological ferrocene-based mediators. Alanine 437 was identified as the exit point of electrons from the Fe4S4 cluster. The enzyme was modified with a Ser436Cys mutation to facilitate covalent attachment of a ferrocene moiety. When modified with Fc-maleimide, this new construct demonstrated direct electron transfer from the enzyme to a gold electrode in a histamine concentration-dependent manner without the need for any additional electron mediators.


Electrons , Rhizobium , Metallocenes , Electron Transport , Oxidants
8.
Cancer Discov ; 13(7): 1696-1719, 2023 07 07.
Article En | MEDLINE | ID: mdl-37140445

TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.


Genes, p53 , Neoplasms , Tumor Suppressor Protein p53 , Animals , Humans , Mice , African People/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism
9.
Eur J Med Chem ; 254: 115376, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37080108

The high morbidity and mortality associated with SARS-CoV-2 infection, the etiological agent of COVID-19, has had a major impact on global public health. Significant progress has been made in the development of an array of vaccines and biologics, however, the emergence of SARS-CoV-2 variants and breakthrough infections are an ongoing major concern. Furthermore, there is an existing paucity of small-molecule host and virus-directed therapeutics and prophylactics that can be used to counter the spread of SARS-CoV-2, and any emerging and re-emerging coronaviruses. We describe herein our efforts to address this urgent need by focusing on the structure-guided design of potent broad-spectrum inhibitors of SARS-CoV-2 3C-like protease (3CLpro or Main protease), an enzyme essential for viral replication. The inhibitors exploit the directional effects associated with the presence of a gem-dimethyl group that allow the inhibitors to optimally interact with the S4 subsite of the enzyme. Several compounds were found to potently inhibit SARS-CoV-2 and MERS-CoV 3CL proteases in biochemical and cell-based assays. Specifically, the EC50 values of aldehyde 1c and its corresponding bisulfite adduct 1d against SARS-CoV-2 were found to be 12 and 10 nM, respectively, and their CC50 values were >50 µM. Furthermore, deuteration of these compounds yielded compounds 2c/2d with EC50 values 11 and 12 nM, respectively. Replacement of the aldehyde warhead with a nitrile (CN) or an α-ketoamide warhead or its corresponding bisulfite adduct yielded compounds 1g, 1eand1f with EC50 values 60, 50 and 70 nM, respectively. High-resolution cocrystal structures have identified the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and, furthermore, have illuminated the mechanism of action of the inhibitors. Overall, the high Safety Index (SI) (SI=CC50/EC50) displayed by these compounds suggests that they are well-suited to conducting further preclinical studies.


COVID-19 , Hepatitis C, Chronic , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/metabolism
10.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article En | MEDLINE | ID: mdl-36902100

We report the structural, biochemical, and functional characterization of the product of gene PA0962 from Pseudomonas aeruginosa PAO1. The protein, termed Pa Dps, adopts the Dps subunit fold and oligomerizes into a nearly spherical 12-mer quaternary structure at pH 6.0 or in the presence of divalent cations at neutral pH and above. The 12-Mer Pa Dps contains two di-iron centers at the interface of each subunit dimer, coordinated by conserved His, Glu, and Asp residues. In vitro, the di-iron centers catalyze the oxidation of Fe2+ utilizing H2O2 (not O2) as an oxidant, suggesting Pa Dps functions to aid P. aeruginosa to survive H2O2-mediated oxidative stress. In agreement, a P. aeruginosa Δdps mutant is significantly more susceptible to H2O2 than the parent strain. The Pa Dps structure harbors a novel network of Tyr residues at the interface of each subunit dimer between the two di-iron centers, which captures radicals generated during Fe2+ oxidation at the ferroxidase centers and forms di-tyrosine linkages, thus effectively trapping the radicals within the Dps shell. Surprisingly, incubating Pa Dps and DNA revealed unprecedented DNA cleaving activity that is independent of H2O2 or O2 but requires divalent cations and 12-mer Pa Dps.


Bacterial Proteins , DNA Cleavage , DNA-Binding Proteins , Hydrogen Peroxide , Oxidative Stress , Pseudomonas aeruginosa , Bacterial Proteins/metabolism , Cations, Divalent , DNA/metabolism , Hydrogen Peroxide/metabolism , Iron/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , DNA-Binding Proteins/metabolism
11.
ACS Pharmacol Transl Sci ; 6(1): 181-194, 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36654747

The advent of SARS-CoV-2, the causative agent of COVID-19, and its worldwide impact on global health, have provided the impetus for the development of effective countermeasures that can be deployed against the virus, including vaccines, monoclonal antibodies, and direct-acting antivirals (DAAs). Despite these efforts, the current paucity of DAAs has created an urgent need for the creation of an enhanced and diversified portfolio of broadly acting agents with different mechanisms of action that can effectively abrogate viral infection. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is a validated target for the discovery of SARS-CoV-2 therapeutics. In this report, we describe the structure-guided utilization of the cyclopropane moiety in the design of highly potent inhibitors of SARS-CoV-2 3CLpro, SARS-CoV-1 3CLpro, and MERS-CoV 3CLpro. High-resolution cocrystal structures were used to identify the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and unravel the mechanism of action. Aldehydes 5c and 11c inhibited SARS-CoV-2 replication with EC50 values of 12 and 11 nM, respectively. Furthermore, the corresponding aldehyde bisulfite adducts 5d and 11d were equipotent with EC50 values of 13 and 12 nM, respectively. The safety index (SI) values for compounds 5c / 11c and 5d / 11d ranged between 7692 and 9090. Importantly, aldehydes 5c / 11c and bisulfite adducts 5d / 11d potently inhibited MERS-CoV 3CLpro with IC50 values of 80 and 120 nM, and 70 and 70 nM, respectively. Likewise, compounds 5c / 11c and 5d / 11d inhibited SARS-CoV-1 with IC50 values of 960 and 350 nM and 790 and 240 nM, respectively. Taken together, these studies suggest that the inhibitors described herein have low cytotoxicity and high potency and are promising candidates for further development as broad-spectrum direct-acting antivirals against highly pathogenic coronaviruses.

12.
J Med Chem ; 65(11): 7818-7832, 2022 06 09.
Article En | MEDLINE | ID: mdl-35638577

The worldwide impact of the ongoing COVID-19 pandemic on public health has made imperative the discovery and development of direct-acting antivirals aimed at targeting viral and/or host targets. SARS-CoV-2 3C-like protease (3CLpro) has emerged as a validated target for the discovery of SARS-CoV-2 therapeutics because of the pivotal role it plays in viral replication. We describe herein the structure-guided design of highly potent inhibitors of SARS-CoV-2 3CLpro that incorporate in their structure novel spirocyclic design elements aimed at optimizing potency by accessing new chemical space. Inhibitors of both SARS-CoV-2 3CLpro and MERS-CoV 3CLpro that exhibit nM potency and high safety indices have been identified. The mechanism of action of the inhibitors and the structural determinants associated with binding were established using high-resolution cocrystal structures.


COVID-19 , Hepatitis C, Chronic , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Pandemics , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
13.
J Mol Biol ; 434(9): 167548, 2022 05 15.
Article En | MEDLINE | ID: mdl-35304125

The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of ß-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.


Antigens, Bacterial , Bacillus anthracis , Bacterial Toxins , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacillus anthracis/chemistry , Bacillus anthracis/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Cryoelectron Microscopy , Humans , Hydrogen-Ion Concentration , Models, Molecular , Mutation , Protein Conformation
14.
Arch Biochem Biophys ; 718: 109122, 2022 03 30.
Article En | MEDLINE | ID: mdl-35063417

Demand exists for a nicotine oxidase enzyme with high catalytic efficiency for a variety of applications including the in vivo detection of nicotine, therapeutic enzymatic blockade of nicotine from the CNS, and inactivation of toxic industrial wastes generated in the manufacture of tobacco products. Nicotine oxidase enzymes identified to date suffer from low efficiency, exhibiting either a high kcat or low Km, but not both. Here we present the crystal structure of the (S)-6-hydroxy-nicotine oxidase from Shinella sp HZN7 (NctB), an enzyme that oxidizes (S)-nicotine with a high kcat (>1 s-1), that possesses remarkable structural and sequence similarity to an enzyme with a nanomolar Km for (S)-nicotine, the (S)-nicotine oxidase from Pseudomonas putidia strain S16 (NicA2). Based on a comparison of our NctB structure and the previously published crystal structure of NicA2, we successfully employed a rational design approach to increase the rate of oxidative turnover of the NicA2 enzyme by ∼25% (0.011 s-1 to 0.014 s-1), and reduce the Km of the NctB protein by approximately 34% (940 µM-622 µM). While modest, these results are a step towards engineering a nicotine oxidase with kinetic parameters that fulfill the functional requirements of biosensing, waste remediation, and therapeutic applications.


Bacterial Proteins , Nicotine , Bacterial Proteins/chemistry , Kinetics , Nicotine/metabolism , Oxidation-Reduction , Pseudomonas
15.
J Biomol Struct Dyn ; 40(24): 13823-13832, 2022.
Article En | MEDLINE | ID: mdl-34705594

Protein tyrosine phosphatases constitute a family of cytosolic and receptor-like signal transducing enzymes that catalyze the hydrolysis of phospho-tyrosine residues of phosphorylated proteins. PTP1B, encoded by PTPN1, is a key negative regulator of insulin and leptin receptor signaling, linking it to two widespread diseases: type 2 diabetes mellitus and obesity. Here, we present crystal structures of the PTP1B apo-enzyme and a complex with a newly identified allosteric inhibitor, 2-(2,5-dimethyl-pyrrol-1-yl)-5-hydroxy-benzoic acid, designated as P00058. The inhibitor binding site is located about 18 Å away from the active center. However, the inhibitor causes significant re-arrangements in the active center of enzyme: residues 45-50 of catalytic Tyr-loop are shifted at their Cα-atom positions by 2.6 to 5.8 Å. We have identified an event of allosteric signal transfer from the inhibitor to the catalytic area using molecular dynamic simulation. Analyzing change of complex structure along the fluctuation trajectory we have found the large Cα-atom shifts in external strand, residues 25-40, which occur at the same time with the shifts in adjacent catalytic p-Tyr-loop. Coming of the signal to this loop arises due to dynamic fluctuation of protein structure at about 4.0 nanoseconds after the inhibitor takes up its space. Communicated by Ramaswamy H. Sarma.


Diabetes Mellitus, Type 2 , Humans , Binding Sites , Signal Transduction , Molecular Dynamics Simulation , Obesity , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
16.
J Med Chem ; 64(24): 17846-17865, 2021 12 23.
Article En | MEDLINE | ID: mdl-34865476

The COVID-19 pandemic is having a major impact on public health worldwide, and there is an urgent need for the creation of an armamentarium of effective therapeutics, including vaccines, biologics, and small-molecule therapeutics, to combat SARS-CoV-2 and emerging variants. Inspection of the virus life cycle reveals multiple viral- and host-based choke points that can be exploited to combat the virus. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is an attractive target for therapeutic intervention, and the design of inhibitors of the protease may lead to the emergence of effective SARS-CoV-2-specific antivirals. We describe herein the results of our studies related to the application of X-ray crystallography, the Thorpe-Ingold effect, deuteration, and stereochemistry in the design of highly potent and nontoxic inhibitors of SARS-CoV-2 3CLpro.


Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Drug Design , HEK293 Cells , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , SARS-CoV-2/enzymology , Stereoisomerism , Vero Cells
17.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article En | MEDLINE | ID: mdl-34210738

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/therapeutic use , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/pathology , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Deuterium , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Lung/pathology , Mice , Mice, Transgenic , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2/enzymology , Sulfonic Acids , Transgenes
18.
J Med Chem ; 64(14): 10047-10058, 2021 07 22.
Article En | MEDLINE | ID: mdl-34213885

A series of nondeuterated and deuterated dipeptidyl aldehyde and masked aldehyde inhibitors that incorporate in their structure a conformationally constrained cyclohexane moiety was synthesized and found to potently inhibit severe acute respiratory syndrome coronavirus-2 3CL protease in biochemical and cell-based assays. Several of the inhibitors were also found to be nanomolar inhibitors of Middle East respiratory syndrome coronavirus 3CL protease. The corresponding latent aldehyde bisulfite adducts were found to be equipotent to the precursor aldehydes. High-resolution cocrystal structures confirmed the mechanism of action and illuminated the structural determinants involved in binding. The spatial disposition of the compounds disclosed herein provides an effective means of accessing new chemical space and optimizing pharmacological activity. The cellular permeability of the identified inhibitors and lack of cytotoxicity warrant their advancement as potential therapeutics for COVID-19.


Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cyclohexanes/pharmacology , Drug Design , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
19.
J Biol Chem ; 296: 100628, 2021.
Article En | MEDLINE | ID: mdl-33812994

Catalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library. To fully delineate the ipglycermide pharmacophore, herein we construct a detailed structure-activity relationship using 280 substituted ipglycermide analogs. Binding affinities of these analogs to immobilized Caenorhabditis elegans iPGM, measured as fold enrichment relative to the index residue by deep sequencing of an mRNA display library, illuminated the significance of each amino acid to the pharmacophore. Using cocrystal structures and binding kinetics, we show that the high affinity of ipglycermide for iPGM orthologs, from Brugia malayi, Onchocerca volvulus, Dirofilaria immitis, and Escherichia coli, is achieved by a codependence between (1) the off-rate mediated by the macrocycle Cys14 thiolate coordination to an active-site Zn2+ in the iPGM phosphatase domain and (2) shape complementarity surrounding the macrocyclic core at the phosphotransferase-phosphatase domain interface. Our results show that the high-affinity binding of ipglycermide to iPGMs freezes these structurally dynamic enzymes into an inactive, stable complex.


Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Phosphoglycerate Mutase/chemistry , Phosphoglycerate Mutase/metabolism , Animals , Catalytic Domain , Humans , Models, Molecular , Phylogeny , Protein Conformation , Structure-Activity Relationship
20.
ACS Infect Dis ; 7(1): 123-140, 2021 01 08.
Article En | MEDLINE | ID: mdl-33269912

Bacteria depend on a well-regulated iron homeostasis to survive adverse environments. A key component of the iron homeostasis machinery is the compartmentalization of Fe3+ in bacterioferritin and its subsequent mobilization as Fe2+ to satisfy metabolic requirements. In Pseudomonas aeruginosa Fe3+ is compartmentalized in bacterioferritin (BfrB), and its mobilization to the cytosol requires binding of a ferredoxin (Bfd) to reduce the stored Fe3+ and release the soluble Fe2+. Blocking the BfrB-Bfd complex in P. aeruginosa by deletion of the bfd gene triggers an irreversible accumulation of Fe3+ in BfrB, concomitant cytosolic iron deficiency and significant impairment of biofilm development. Herein we report that small molecules developed to bind BfrB at the Bfd binding site block the BfrB-Bfd complex, inhibit the mobilization of iron from BfrB in P. aeruginosa cells, elicit a bacteriostatic effect on planktonic cells, and are bactericidal to cells embedded in mature biofilms.


Ferredoxins , Pseudomonas aeruginosa , Bacterial Proteins , Biofilms , Crystallography, X-Ray , Cytochrome b Group , Ferritins
...