Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 24(3): e13915, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38099394

ABSTRACT

Continued advancements in environmental DNA (eDNA) research have made it possible to access intraspecific variation from eDNA samples, opening new opportunities to expand non-invasive genetic studies of wildlife populations. However, the use of eDNA samples for individual genotyping, as typically performed in non-invasive genetics, still remains elusive. We present successful individual genotyping of eDNA obtained from snow tracks of three large carnivores: brown bear (Ursus arctos), European lynx (Lynx lynx) and wolf (Canis lupus). DNA was extracted using a protocol for isolating water eDNA and genotyped using amplicon sequencing of short tandem repeats (STR), and for brown bear a sex marker, on a high-throughput sequencing platform. Individual genotypes were obtained for all species, but genotyping performance differed among samples and species. The proportion of samples genotyped to individuals was higher for brown bear (5/7) and wolf (7/10) than for lynx (4/9), and locus genotyping success was greater for brown bear (0.88). The sex marker was typed in six out of seven brown bear samples. Results for three species show that reliable individual genotyping, including sex identification, is now possible from eDNA in snow tracks, underlining its vast potential to complement the non-invasive genetic methods used for wildlife. To fully leverage the application of snow track eDNA, improved understanding of the ideal species- and site-specific sampling conditions, as well as laboratory methods promoting genotyping success, is needed. This will also inform efforts to retrieve and type nuclear DNA from other eDNA samples, thereby advancing eDNA-based individual and population-level studies.


Subject(s)
DNA, Environmental , Lynx , Ursidae , Wolves , Humans , Animals , Ursidae/genetics , Wolves/genetics , Snow , Lynx/genetics , DNA/genetics , Genotype , Animals, Wild/genetics
2.
Parasit Vectors ; 15(1): 187, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655262

ABSTRACT

BACKGROUND: Changes in host phenotype following parasite infection are often considered as host manipulation when they seem advantageous for the parasite. However, putative cases of host manipulation by parasites are rarely tested in field-realistic conditions. Infection-induced phenotypic change cannot be conclusively considered as host manipulation if no evidence shows that this trait is adaptive for the parasite in the wild. Plasmodium sp., the parasites causing malaria in vertebrates, are hypothesized to "manipulate" their host by making their odour more attractive to mosquitoes, their vector and final host. While this is fairly well supported by studies on mice and humans, studies focusing on avian malaria give contradictory results. METHODS: In the present study, genotyped birds at different stages (uninfected, acute and chronic) of Plasmodium relictum infection were exposed, in a large outdoor aviary, to their natural vector, the mosquito Culex pipiens. RESULTS: After genotyping the blood meals of more than 650 mosquitoes, we found that mosquitoes did not bite infected birds more than they bit them before infection, nor more than they bit uninfected hosts. CONCLUSIONS: Our study highlights the importance of testing ecological behaviours under natural conditions and suggests that different processes might be at play in mammals and birds regarding potential manipulation of attractiveness by malaria parasites.


Subject(s)
Birds , Bites and Stings , Culicidae , Malaria, Avian , Animals , Birds/parasitology , Bites and Stings/veterinary , Mosquito Vectors
3.
Int J Parasitol ; 52(9): 617-627, 2022 08.
Article in English | MEDLINE | ID: mdl-35760376

ABSTRACT

Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviours influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.


Subject(s)
Bird Diseases , Coinfection , Communicable Diseases , Haemosporida , Parasites , Plasmodium , Protozoan Infections, Animal , Animals , Bayes Theorem , Bird Diseases/epidemiology , Bird Diseases/parasitology , Birds/parasitology , Coinfection/epidemiology , Coinfection/veterinary , Haemosporida/genetics , Phylogeny , Prevalence , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...