Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 37(15): 4639-4646, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33826341

ABSTRACT

We report the stress-strain effect of a stretchable natural rubber (NR)-calcium phosphate composite on the surface wettability (SW) using an innovative approach coupling a uniaxial tensile micromachine, goniometer, and microscope. In situ contact angle measurements in real time were performed during mechanical tension. Our results show that SW is guided by the stress-strain relationship with two different characteristics, depending on the static or dynamic experiments. The results evidenced the limits of the classical theory of wetting. Furthermore, based on the mechanically tunable SW of the system associated with the cytocompatibility of the NR composite, we have modeled such a system for application as a cell support. From the experimental surface energy value, our proposed 3D modeling numerical simulation predicted a window of opportunities for cell-NR survival under mechanical stimuli. The presented data and the thermodynamics-based theoretical approach enable not only accurate correlation of SW with mechanical properties of the NR composite but also provide huge potential for future cell supportability in view of tissue engineering.

2.
Dyes Pigm ; 180: 108519, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32382200

ABSTRACT

A series of selenylated-oxadiazoles were prepared and their interaction with DNA was investigated. The photophysical studies showed that all the selenylated compounds presented absorption between 270 and 329 nm, assigned to combined n→π* and π→π* transitions, and an intense blue emission (325-380 nm) with quantum yield in the range of Φ F = 0.1-0.4. DFT and TD-DFT calculations were also performed to study the likely geometry and the excited state of these compounds. Electrochemical studies revealed the ionization potential energies (-5.13 to -6.01 eV) and electron affinity energies (-2.25 to -2.83 eV), depending directly on the electronic effect (electron-donating or electron-withdrawing) of the substituent attached to the product. Finally, the UV-Vis DNA interaction experiments indicated that the compounds can interact with the DNA molecule due to intercalation, except for 3g (which interacted via electrostatic interaction). Plasmid cleavage assay presented positive results only for 3f that presented the strongest interaction results. These results made the tested selenylated-oxadiazoles as suitable structures for the development of drugs and the design of structurally-related therapeutics.

3.
ACS Biomater Sci Eng ; 4(8): 2784-2793, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-33435003

ABSTRACT

This manuscript reports an experimental study on surfaces of natural rubber membranes modified by incorporation of calcium phosphate particles. In particular, we focused on the wettability, a subject for biological aspects. Five surfaces of natural rubber (NR) membranes (pure, polymer-bioceramic composite (NR-CaP), and three modified surfaces subjected to a simulated body fluid (NR-SBF)) were produced and characterized by confocal Raman-spectroscopy, AFM, SEM, and XPS, and the results were correlated with the wetting properties. Seven liquids (water, formamide, di-iodomethane, ethylene glycol, hexadecane, simulated body fluid, and human blood droplets) were used in different experimental sections. Static and dynamic contact angle measurements were conducted to obtain the solid-liquid tensions, work of adhesion, and depinning forces. The incorporation of CaP particles in the polymer decreases the roughness and increases the interfacial adhesion, and there was no dependence between the morphology and equilibrium contact line. The hydrophobic state of the NR surfaces is preserved. After exposure to a biological environment, the NR surfaces were chemically modified increasing blood wettability and decreasing the negative surface charges and the contact angle to values close to those associated with protein adsorption and cell adhesion, therefore opening possibilities for applications of these materials as biomembranes. On the other hand, the concepts applied, regarding different wettability aspects, should enable the evaluation of biomaterial surfaces and provide new insights allowing a better understanding of body fluid-material interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL