Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 283(1823)2016 01 27.
Article in English | MEDLINE | ID: mdl-26817767

ABSTRACT

Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity.


Subject(s)
Environmental Monitoring , Extinction, Biological , Introduced Species , Vertebrates , Animals , Biodiversity , Databases, Factual , Endangered Species , Internationality
3.
Sci Rep ; 5: 11828, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26149694

ABSTRACT

Most studies of the effects of global changes on biodiversity focus on a single threat, but multiple threats lead to species extinction. We lack spatially explicit assessments of the intensity of multiple threats and their impacts on biodiversity. Here, we used a novel metric of cumulative threats and impacts to assess the consequences of multiple threats on 196 endemic species across the USA. We predict that large areas with high cumulative impact scores for amphibians, birds, mammals, and reptiles will be concentrated in the eastern part of the USA by the 2050 s and 2080 . These high cumulative impact values are due mainly to the presence of invasive species, climate change, cropland and pasture areas; additionally, a significant proportion of endemic species are vulnerable to some of these threats where they occur. This analysis provides a useful means of identifying where conservation measures and monitoring programs that should consider multiple threats should be implemented in the future.


Subject(s)
Biodiversity , Climate Change , Amphibians , Animals , Birds , Extinction, Biological , Introduced Species , Mammals , Reptiles , United States
4.
Mol Ecol ; 22(8): 2249-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23402276

ABSTRACT

Understanding the way in which the climatic oscillations of the Quaternary Period have shaped the distribution and genetic structure of extant tree species provides insight into the processes driving species diversification, distribution and survival. Deciphering the genetic consequences of past climatic change is also critical for the conservation and sustainable management of forest and tree genetic resources, a timely endeavour as the Earth heads into a period of fast climate change. We used a combination of genetic data and ecological niche models to investigate the historical patterns of biogeographic range expansion of a wild fruit tree, the European crabapple (Malus sylvestris), a wild contributor to the domesticated apple. Both climatic predictions for the last glacial maximum and analyses of microsatellite variation indicated that M. sylvestris experienced range contraction and fragmentation. Bayesian clustering analyses revealed a clear pattern of genetic structure, with one genetic cluster spanning a large area in Western Europe and two other genetic clusters with a more limited distribution range in Eastern Europe, one around the Carpathian Mountains and the other restricted to the Balkan Peninsula. Approximate Bayesian computation appeared to be a powerful technique for inferring the history of these clusters, supporting a scenario of simultaneous differentiation of three separate glacial refugia. Admixture between these three populations was found in their suture zones. A weak isolation by distance pattern was detected within each population, indicating a high extent of historical gene flow for the European crabapple.


Subject(s)
Evolution, Molecular , Gene Flow , Malus/genetics , Microsatellite Repeats/genetics , Balkan Peninsula , Climate Change , Europe , Haplotypes , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...