Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Curr Vasc Pharmacol ; 17(5): 440-446, 2019.
Article in English | MEDLINE | ID: mdl-30205799

ABSTRACT

The maintenance of the pH homeostasis is maintained by several mechanisms including the efflux of protons (H+) via membrane transporters expressed in almost all mammalian cells. Along these membrane transporters the sodium/H+ exchangers (NHEs), mainly NHE isoform 1 (NHE1), plays a key role in this phenomenon. NHE1 is under modulation by several environmental conditions (e.g. hyperglycaemia, protein kinase C activity) as well as hormones, including insulin. NHE1 activation causes intracellular alkalization in human endothelial cells leading to activation of the endothelial Nitric Oxide Synthase (eNOS) to generate NO. Intracellular alkalization is a phenomenon that also results in upregulation of the glucose transporter GLUT4 in cells that are responsive to insulin. A reduction in the removal of the extracellular D-glucose is seen in states of insulin resistance, such as in diabetes mellitus and obesity. Since insulin is a potent activator of eNOS in human endothelium, therefore causing vasodilation, and its vascular effect is reduced in insulin resistance it is likely that a defective signal to activate NHE1 in insulin target cells is expected. This phenomenon results in lower redistribution and activation of GLUT4 leading to reduced uptake of D-glucose and hyperglycaemia. The general concept of a role for NHE1, and perhaps other NHEs isoforms, in insulin resistance in the human vasculature is proposed.


Subject(s)
Acid-Base Equilibrium , Blood Glucose/metabolism , Blood Vessels/metabolism , Diabetes Mellitus/metabolism , Diabetic Angiopathies/metabolism , Hyperglycemia/metabolism , Insulin Resistance , Insulin/blood , Animals , Biomarkers/blood , Blood Vessels/physiopathology , Diabetes Mellitus/physiopathology , Diabetic Angiopathies/etiology , Diabetic Angiopathies/physiopathology , Glucose Transporter Type 4/metabolism , Humans , Hydrogen-Ion Concentration , Hyperglycemia/complications , Hyperglycemia/physiopathology , Risk Factors , Sodium-Hydrogen Exchanger 1/metabolism
2.
PLoS One ; 10(12): e0146042, 2015.
Article in English | MEDLINE | ID: mdl-26713849

ABSTRACT

The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF-preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 µmol/L STa (30 minutes), 25 µmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 µmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 µmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 µmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144-7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa-decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea.


Subject(s)
Cyclic AMP/metabolism , Enterotoxins/pharmacology , Epithelial Cells/drug effects , Escherichia coli , Hot Temperature , Intestines/cytology , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Adult , Cell Line, Tumor , Cyclic GMP/metabolism , Drug Stability , Enterotoxins/chemistry , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Hydrogen-Ion Concentration , Kinetics , Male , Protons , Sodium-Hydrogen Exchangers/metabolism
3.
PLoS One ; 7(12): e51451, 2012.
Article in English | MEDLINE | ID: mdl-23236503

ABSTRACT

Arsenic main inorganic compound is arsenic trioxide (ATO) presented in solution mainly as arsenite. ATO increases intracellular pH (pHi), cell proliferation and tumor growth. Sodium-proton exchangers (NHEs) modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK) cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0-48 hours) in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5-100 µmol/L, NHEs inhibitor), PD-98059 (30 µmol/L, MAPK1/2 inhibitor), Gö6976 (10 µmol/L, PKCα, ßI and µ inhibitor), or Schering 28080 (10 µmol/L, H(+)/K(+)ATPase inhibitor) plus concanamycin (0.1 µmol/L, V type ATPases inhibitor). Incorporation of [(3)H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na(+)-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44(mapk)) were also determined. Lowest ATO (0.05 µmol/L, ~0.01 ppm) used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1)-like transport dependent-increased pHi requiring p42/44(mapk) and PKCα, ßI and/or µ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and in circumstances where ATO, likely arsenite, is available at the drinking-water at these levels.


Subject(s)
Arsenicals/metabolism , Cell Proliferation/drug effects , Oxides/metabolism , Sodium-Hydrogen Exchangers/metabolism , Amiloride/analogs & derivatives , Analysis of Variance , Animals , Arsenic Trioxide , Arsenicals/pharmacology , Blotting, Western , Carbazoles , Cell Count , Cell Fractionation , Dogs , Flavonoids , Fluorometry , Hydrogen-Ion Concentration , Imidazoles , Macrolides , Madin Darby Canine Kidney Cells , Oxides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL