Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Lancet Infect Dis ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38723650

ABSTRACT

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.

2.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467646

ABSTRACT

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Amino Acids , Antibodies, Viral , Antibodies, Neutralizing
3.
Vaccine ; 42(9): 2181-2190, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38458870

ABSTRACT

A central goal of vaccine research is to characterize and validate immune correlates of protection (CoPs). In addition to helping elucidate immunological mechanisms, a CoP can serve as a valid surrogate endpoint for an infectious disease clinical outcome and thus qualifies as a primary endpoint for vaccine authorization or approval without requiring resource-intensive randomized, controlled phase 3 trials. Yet, it is challenging to persuasively validate a CoP, because a prognostic immune marker can fail as a reliable basis for predicting/inferring the level of vaccine efficacy against a clinical outcome, and because the statistical analysis of phase 3 trials only has limited capacity to disentangle association from cause. Moreover, the multitude of statistical methods garnered for CoP evaluation in phase 3 trials renders the comparison, interpretation, and synthesis of CoP results challenging. Toward promoting broader harmonization and standardization of CoP evaluation, this article summarizes four complementary statistical frameworks for evaluating CoPs in a phase 3 trial, focusing on the frameworks' distinct scientific objectives as measured and communicated by distinct causal vaccine efficacy parameters. Advantages and disadvantages of the frameworks are considered, dependent on phase 3 trial context, and perspectives are offered on how the frameworks can be applied and their results synthesized.


Subject(s)
Vaccine Efficacy , Vaccines , Research Design , Biomarkers/analysis , Causality , Randomized Controlled Trials as Topic
4.
medRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045387

ABSTRACT

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

5.
Int J Infect Dis ; 137: 28-39, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820782

ABSTRACT

BACKGROUND: Stochastic interventional vaccine efficacy (SVE) analysis is a new approach to correlate of protection (CoP) analysis of a phase III trial that estimates how vaccine efficacy (VE) would change under hypothetical shifts of an immune marker. METHODS: We applied nonparametric SVE methodology to the COVE trial of messenger RNA-1273 vs placebo to evaluate post-dose 2 pseudovirus neutralizing antibody (nAb) titer against the D614G strain as a CoP against COVID-19. Secondly, we evaluated the ability of these results to predict VE against variants based on shifts of geometric mean titers to variants vs D614G. Prediction accuracy was evaluated by 13 validation studies, including 12 test-negative designs. RESULTS: SVE analysis of COVE supported post-dose 2 D614G titer as a CoP: estimated VE ranged from 66.9% (95% confidence interval: 36.2, 82.8%) to 99.3% (99.1, 99.4%) at 10-fold decreased or increased titer shifts, respectively. The SVE estimates only weakly predicted variant-specific VE estimates (concordance correlation coefficient 0.062 for post 2-dose VE). CONCLUSION: SVE analysis of COVE supports nAb titer as a CoP for messenger RNA vaccines. Predicting variant-specific VE proved difficult due to many limitations. Greater anti-Omicron titers may be needed for high-level protection against Omicron vs anti-D614G titers needed for high-level protection against pre-Omicron COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , RNA, Messenger/genetics
6.
Viruses ; 15(10)2023 09 29.
Article in English | MEDLINE | ID: mdl-37896806

ABSTRACT

The COVE trial randomized participants to receive two doses of mRNA-1273 vaccine or placebo on Days 1 and 29 (D1, D29). Anti-SARS-CoV-2 Spike IgG binding antibodies (bAbs), anti-receptor binding domain IgG bAbs, 50% inhibitory dilution neutralizing antibody (nAb) titers, and 80% inhibitory dilution nAb titers were measured at D29 and D57. We assessed these markers as correlates of protection (CoPs) against COVID-19 using stochastic interventional vaccine efficacy (SVE) analysis and principal surrogate (PS) analysis, frameworks not used in our previous COVE immune correlates analyses. By SVE analysis, hypothetical shifts of the D57 Spike IgG distribution from a geometric mean concentration (GMC) of 2737 binding antibody units (BAU)/mL (estimated vaccine efficacy (VE): 92.9% (95% CI: 91.7%, 93.9%)) to 274 BAU/mL or to 27,368 BAU/mL resulted in an overall estimated VE of 84.2% (79.0%, 88.1%) and 97.6% (97.4%, 97.7%), respectively. By binary marker PS analysis of Low and High subgroups (cut-point: 2094 BAU/mL), the ignorance interval (IGI) and estimated uncertainty interval (EUI) for VE were [85%, 90%] and (78%, 93%) for Low compared to [95%, 96%] and (92%, 97%) for High. By continuous marker PS analysis, the IGI and 95% EUI for VE at the 2.5th percentile (519.4 BAU/mL) vs. at the 97.5th percentile (9262.9 BAU/mL) of D57 Spike IgG concentration were [92.6%, 93.4%] and (89.2%, 95.7%) vs. [94.3%, 94.6%] and (89.7%, 97.0%). Results were similar for other D29 and D57 markers. Thus, the SVE and PS analyses additionally support all four markers at both time points as CoPs.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Immunoglobulin G , Vaccine Efficacy
7.
iScience ; 26(9): 107595, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37654470

ABSTRACT

Combination monoclonal broadly neutralizing antibody (bnAb) regimens are in clinical development for HIV prevention, necessitating additional knowledge of bnAb neutralization potency/breadth against circulating viruses. Williamson et al. (2021) described a software tool, Super LeArner Prediction of NAb Panels (SLAPNAP), with application to any HIV bnAb regimen with sufficient neutralization data against a set of viruses in the Los Alamos National Laboratory's Compile, Neutralize, and Tally Nab Panels repository. SLAPNAP produces a proteomic antibody resistance (PAR) score for Env sequences based on predicted neutralization resistance and estimates variable importance of Env amino acid features. We apply SLAPNAP to compare HIV bnAb regimens undergoing clinical testing, finding improved power for downstream sieve analyses and increased precision for comparing neutralization potency/breadth of bnAb regimens due to the inclusion of PAR scores of Env sequences with much larger sample sizes available than for neutralization outcomes. SLAPNAP substantially improves bnAb regimen characterization, ranking, and down-selection.

8.
Res Sq ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-37398105

ABSTRACT

It is of interest to pinpoint SARS-CoV-2 sequence features defining vaccine resistance. In the ENSEMBLE randomized, placebo-controlled phase 3 trial, estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were measured from 484 vaccine and 1,067 placebo recipients who acquired COVID-19 during the trial. In Latin America, where Spike diversity was greatest, VE was significantly lower against Lambda than against Reference and against all non-Lambda variants [family-wise error rate (FWER) p < 0.05]. VE also differed by residue match vs. mismatch to the vaccine-strain residue at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20). VE significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 different antibody-epitope escape scores and by 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccine recipient sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against viruses with greatest distances. These results help map antigenic specificity of in vivo vaccine protection.

9.
Int J Antimicrob Agents ; 62(4): 106939, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517627

ABSTRACT

BACKGROUND: Implementation of newer anti-tuberculosis (TB) drugs may prolong the QT interval, increasing the risk of arrythmias and sudden cardiac death. The potential for cardiac adverse events has prompted recommendations for frequent cardiac monitoring during treatment. However, unknowns remain, including the association between drug concentrations and QT interval. METHODS: An observational prospective cohort study design was used. Patients undergoing treatment for drug-resistant TB in Georgia were assessed. Serial blood samples were collected at 4-6 weeks for pharmacokinetics. Electrocardiograms were recommended to be performed monthly. A generalized estimating equation spline model was used to investigate (1) the effect difference between bedaquiline and delamanid, (2) the cumulative effect of number of anti-TB drugs, and (3) the relationship between serum drug concentrations on QTc interval. RESULTS: Among 94 patients receiving either bedaquiline (n = 64) or delamanid (n = 30)-based treatment, most were male (82%), and the mean age was 39 years. The mean maximum QTc increase during the first six months was 37.5 ms (IQR: 17.8-56.8). Bedaquiline- and delamanid-based regimens displayed similar increased mean QTc change from baseline during drug administration (P = 0.12). Increasing number of anti-TB drugs was associated with an increased QTc (P = 0.01), but participants trended back towards baseline after drug discontinuation (P = 0.25). A significant association between AUC, Cmin, Cmax, and increased QTc interval was found for bedaquiline (months 1-6) and levofloxacin (months 1-12). CONCLUSION: Bedaquiline- and delamanid-based regimens and increasing number of QT prolonging agents led to modest increases in the QTc interval with minimal clinical effect.


Subject(s)
Long QT Syndrome , Nitroimidazoles , Tuberculosis, Multidrug-Resistant , Humans , Male , Adult , Female , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Prospective Studies , Diarylquinolines/adverse effects , Nitroimidazoles/adverse effects , Nitroimidazoles/pharmacokinetics , Oxazoles/adverse effects , Oxazoles/pharmacokinetics , Tuberculosis, Multidrug-Resistant/drug therapy , Long QT Syndrome/chemically induced
10.
Nat Commun ; 14(1): 3605, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330602

ABSTRACT

While new vaccines for SARS-CoV-2 are authorized based on neutralizing antibody (nAb) titer against emerging variants of concern, an analogous pathway does not exist for preventative monoclonal antibodies. In this work, nAb titers were assessed as correlates of protection against COVID-19 in the casirivimab + imdevimab monoclonal antibody (mAb) prevention trial (ClinicalTrials.gov #NCT4452318) and in the mRNA-1273 vaccine trial (ClinicalTrials.gov #NCT04470427). In the mAb trial, protective efficacy of 92% (95% confidence interval (CI): 84%, 98%) is associated with a nAb titer of 1000 IU50/ml, with lower efficacy at lower nAb titers. In the vaccine trial, protective efficacies of 93% [95% CI: 91%, 95%] and 97% (95% CI: 95%, 98%) are associated with nAb titers of 100 and 1000 IU50/ml, respectively. These data quantitate a nAb titer correlate of protection for mAbs benchmarked alongside vaccine induced nAb titers and support nAb titer as a surrogate endpoint for authorizing new mAbs.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination
11.
PLoS Med ; 20(5): e1004121, 2023 05.
Article in English | MEDLINE | ID: mdl-37141386

ABSTRACT

BACKGROUND: The Eastern European country of Georgia initiated a nationwide hepatitis C virus (HCV) elimination program in 2015 to address a high burden of infection. Screening for HCV infection through antibody testing was integrated into multiple existing programs, including the National Tuberculosis Program (NTP). We sought to compare the hepatitis C care cascade among patients with and without tuberculosis (TB) diagnosis in Georgia between 2015 and 2019 and to identify factors associated with loss to follow-up (LTFU) in hepatitis C care among patients with TB. METHODS AND FINDINGS: Using national ID numbers, we merged databases of the HCV elimination program, NTP, and national death registry from January 1, 2015 to September 30, 2020. The study population included 11,985 adults (aged ≥18 years) diagnosed with active TB from January 1, 2015 through December 31, 2019, and 1,849,820 adults tested for HCV antibodies between January 1, 2015 and September 30, 2020, who were not diagnosed with TB during that time. We estimated the proportion of patients with and without TB who were LTFU at each step of the HCV care cascade and explored temporal changes. Among 11,985 patients with active TB, 9,065 (76%) patients without prior hepatitis C treatment were tested for HCV antibodies, of which 1,665 (18%) had a positive result; LTFU from hepatitis C care was common, with 316 of 1,557 (20%) patients with a positive antibody test not undergoing viremia testing and 443 of 1,025 (43%) patients with viremia not starting treatment for hepatitis C. Overall, among persons with confirmed viremic HCV infection, due to LTFU at various stages of the care cascade only 28% of patients with TB had a documented cure from HCV infection, compared to 55% among patients without TB. LTFU after positive antibody testing substantially decreased in the last 3 years, from 32% among patients diagnosed with TB in 2017 to 12% among those diagnosed in 2019. After a positive HCV antibody test, patients without TB had viremia testing sooner than patients with TB (hazards ratio [HR] = 1.46, 95% confidence intervals [CI] [1.39, 1.54], p < 0.001). After a positive viremia test, patients without TB started hepatitis C treatment sooner than patients with TB (HR = 2.05, 95% CI [1.87, 2.25], p < 0.001). In the risk factor analysis adjusted for age, sex, and case definition (new versus previously treated), multidrug-resistant (MDR) TB was associated with an increased risk of LTFU after a positive HCV antibody test (adjusted risk ratio [aRR] = 1.41, 95% CI [1.12, 1.76], p = 0.003). The main limitation of this study was that due to the reliance on existing electronic databases, we were unable to account for the impact of all confounding factors in some of the analyses. CONCLUSIONS: LTFU from hepatitis C care after a positive antibody or viremia test was high and more common among patients with TB than in those without TB. Better integration of TB and hepatitis C care systems can potentially reduce LTFU and improve patient outcomes both in Georgia and other countries that are initiating or scaling up their nationwide hepatitis C control efforts and striving to provide personalized TB treatment.


Subject(s)
Hepatitis C , Tuberculosis, Multidrug-Resistant , Tuberculosis , Adult , Humans , Adolescent , Hepacivirus , Georgia/epidemiology , Hepatitis C Antibodies , Viremia , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Cohort Studies
12.
Sci Transl Med ; 15(692): eade9078, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37075127

ABSTRACT

The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , Vaccine Efficacy , COVID-19/prevention & control , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
13.
NPJ Vaccines ; 8(1): 36, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36899062

ABSTRACT

In the phase 3 trial of the AZD1222 (ChAdOx1 nCoV-19) vaccine conducted in the U.S., Chile, and Peru, anti-spike binding IgG concentration (spike IgG) and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured four weeks after two doses were assessed as correlates of risk and protection against PCR-confirmed symptomatic SARS-CoV-2 infection (COVID-19). These analyses of SARS-CoV-2 negative participants were based on case-cohort sampling of vaccine recipients (33 COVID-19 cases by 4 months post dose two, 463 non-cases). The adjusted hazard ratio of COVID-19 was 0.32 (95% CI: 0.14, 0.76) per 10-fold increase in spike IgG concentration and 0.28 (0.10, 0.77) per 10-fold increase in nAb ID50 titer. At nAb ID50 below the limit of detection (< 2.612 IU50/ml), 10, 100, and 270 IU50/ml, vaccine efficacy was -5.8% (-651%, 75.6%), 64.9% (56.4%, 86.9%), 90.0% (55.8%, 97.6%) and 94.2% (69.4%, 99.1%). These findings provide further evidence towards defining an immune marker correlate of protection to help guide regulatory/approval decisions for COVID-19 vaccines.

15.
Nat Commun ; 14(1): 331, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658109

ABSTRACT

In the PREVENT-19 phase 3 trial of the NVX-CoV2373 vaccine (NCT04611802), anti-spike binding IgG concentration (spike IgG), anti-RBD binding IgG concentration (RBD IgG), and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured two weeks post-dose two are assessed as correlates of risk and as correlates of protection against COVID-19. Analyses are conducted in the U.S. cohort of baseline SARS-CoV-2 negative per-protocol participants using a case-cohort design that measures the markers from all 12 vaccine recipient breakthrough COVID-19 cases starting 7 days post antibody measurement and from 639 vaccine recipient non-cases. All markers are inversely associated with COVID-19 risk and directly associated with vaccine efficacy. In vaccine recipients with nAb ID50 titers of 50, 100, and 7230 international units (IU50)/ml, vaccine efficacy estimates are 75.7% (49.8%, 93.2%), 81.7% (66.3%, 93.2%), and 96.8% (88.3%, 99.3%). The results support potential cross-vaccine platform applications of these markers for guiding decisions about vaccine approval and use.


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulin G , SARS-CoV-2 , Vaccine Efficacy , Clinical Trials, Phase III as Topic
16.
Int J Biostat ; 19(1): 261-289, 2023 05 01.
Article in English | MEDLINE | ID: mdl-35851449

ABSTRACT

We consider estimation of a functional parameter of a realistically modeled data distribution based on observing independent and identically distributed observations. The highly adaptive lasso estimator of the functional parameter is defined as the minimizer of the empirical risk over a class of cadlag functions with finite sectional variation norm, where the functional parameter is parametrized in terms of such a class of functions. In this article we establish that this HAL estimator yields an asymptotically efficient estimator of any smooth feature of the functional parameter under a global undersmoothing condition. It is formally shown that the L 1-restriction in HAL does not obstruct it from solving the score equations along paths that do not enforce this condition. Therefore, from an asymptotic point of view, the only reason for undersmoothing is that the true target function might not be complex so that the HAL-fit leaves out key basis functions that are needed to span the desired efficient influence curve of the smooth target parameter. Nonetheless, in practice undersmoothing appears to be beneficial and a simple targeted method is proposed and practically verified to perform well. We demonstrate our general result HAL-estimator of a treatment-specific mean and of the integrated square density. We also present simulations for these two examples confirming the theory.


Subject(s)
Employment , Likelihood Functions
17.
Clin Infect Dis ; 76(2): 245-251, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36134743

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) infection causes dysregulation and suppression of immune pathways involved in the control of tuberculosis (TB) infection. However, data on the role of chronic hepatitis C as a risk factor for active TB are lacking. We sought to evaluate the association between HCV infection and the development of active TB. METHODS: We conducted a cohort study in Georgia among adults tested for HCV antibodies (January 2015-September 2020) and followed longitudinally for the development of newly diagnosed active TB. Data were obtained from the Georgian national programs of hepatitis C and TB. The exposures of interest were untreated and treated HCV infection. A Cox proportional hazards model was used to calculate adjusted hazard ratios (aHRs). RESULTS: A total of 1 828 808 adults were included (median follow-up time: 26 months; IQR: 13-39 months). Active TB was diagnosed in 3163 (0.17%) individuals after a median of 6 months follow-up (IQR: 1-18 months). The incidence rate per 100 000 person-years was 296 among persons with untreated HCV infection, 109 among those with treated HCV infection, and 65 among HCV-negative persons. In multivariable analysis, both untreated (aHR = 2.9; 95% CI: 2.4-3.4) and treated (aHR = 1.6; 95% CI: 1.4-2.0) HCV infections were associated with a higher hazard of active TB, compared with HCV-negative persons. CONCLUSIONS: Adults with HCV infection, particularly untreated individuals, were at higher risk of developing active TB disease. Screening for latent TB infection and active TB disease should be part of clinical evaluation of people with HCV infection, especially in high-TB-burden areas.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Latent Tuberculosis , Tuberculosis , Adult , Humans , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Incidence , Cohort Studies , Tuberculosis/epidemiology , Tuberculosis/complications , Risk Factors , Hepatitis C/epidemiology , Latent Tuberculosis/complications , Hepacivirus
18.
medRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168338

ABSTRACT

Poor penetration of many anti-tuberculosis (TB) antibiotics into the central nervous system (CNS) is thought to be a major driver of morbidity and mortality in TB meningitis (TBM). While the amount of a particular drug that crosses into the cerebrospinal fluid (CSF) varies from person to person, little is known about the host factors associated with interindividual differences in CSF concentrations of anti-TB drugs. In patients diagnosed with TBM from the country of Georgia (n=17), we investigate the association between CSF concentrations of anti-TB antibiotics and multiple host factors including serum drug concentrations and CSF concentrations of metabolites and cytokines. We found >2-fold differences in CSF concentrations of anti-TB antibiotics from person to person for all drugs tested including cycloserine, ethambutol, imipenem, isoniazid, levofloxacin, linezolid, moxifloxacin pyrazinamide, and rifampin. While serum drug concentrations explained over 40% of the variation in CSF drug concentrations for cycloserine, isoniazid, linezolid, and pyrazinamide (adjusted R 2 >0.4, p<0.001 for all), there was no evidence of an association between serum concentrations of imipenem and ethambutol and their respective CSF concentrations. CSF concentrations of carnitines were significantly associated with concentrations of ethambutol and imipenem (q<0.05), and imipenem was the only antibiotic significantly associated with CSF cytokine concentrations. These results indicate that there is high interindividual variability in CSF drug concentrations in patients treated for TBM, which is only partially explained by differences in serum drug concentrations and not associated with concentrations of cytokines and chemokines in the CSF.

19.
Health Serv Outcomes Res Methodol ; 22(4): 435-453, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36437854

ABSTRACT

Objective: To improve the estimation of healthcare expenditures by introducing a novel method that is well-suited to situations where data exhibit strong skewness and zero-inflation. Data Sources: Simulations, and two real-world datasets: the 2016-2017 Medical Expenditure Panel Survey (MEPS); the Back Pain Outcomes using Longitudinal Data (BOLD). Study Design: Super learner is an ensemble machine learning approach that can combine several algorithms to improve estimation. We propose a two-stage super learner that is well suited for healthcare expenditure data by separately estimating the probability of any healthcare expenditure and the mean amount of healthcare expenditure conditional on having healthcare expenditures. These estimates can then be combined to yield a single estimate of expenditures for each observation. The analytical strategy can flexibly incorporate a range of individual estimation approaches for each stage of estimation, including both regression-based approaches and machine learning algorithms such as random forests. We compare the performance of the two-stage super learner with a one-stage super learner, and with multiple individual algorithms for estimation of healthcare cost under a broad range of data settings in simulated and real data. The predictive performance was compared using Mean Squared Error and R2. Conclusions: Our results indicate that the two-stage super learner has better performance compared with a one-stage super learner and individual algorithms, for healthcare cost estimation under a wide variety of settings in simulations and in empirical analyses. The improvement of the two-stage super learner over the one-stage super learner was particularly evident in settings when zero-inflation is high.

20.
Nat Microbiol ; 7(12): 1996-2010, 2022 12.
Article in English | MEDLINE | ID: mdl-36357712

ABSTRACT

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , ChAdOx1 nCoV-19 , 2019-nCoV Vaccine mRNA-1273 , Vaccine Efficacy , Antibodies, Neutralizing
SELECTION OF CITATIONS
SEARCH DETAIL
...