Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 13(12): e0207519, 2018.
Article in English | MEDLINE | ID: mdl-30517116

ABSTRACT

History and environment shape crop biodiversity, particularly in areas with vulnerable human communities and ecosystems. Tracing crop biodiversity over time helps understand how rural societies cope with anthropogenic or climatic changes. Exceptionally well preserved ancient DNA of quinoa (Chenopodium quinoa Willd.) from the cold and arid Andes of Argentina has allowed us to track changes and continuities in quinoa diversity over 18 centuries, by coupling genotyping of 157 ancient and modern seeds by 24 SSR markers with cluster and coalescence analyses. Cluster analyses revealed clear population patterns separating modern and ancient quinoas. Coalescence-based analyses revealed that genetic drift within a single population cannot explain genetic differentiation among ancient and modern quinoas. The hypothesis of a genetic bottleneck related to the Spanish Conquest also does not seem to apply at a local scale. Instead, the most likely scenario is the replacement of preexisting quinoa gene pools with new ones of lower genetic diversity. This process occurred at least twice in the last 18 centuries: first, between the 6th and 12th centuries-a time of agricultural intensification well before the Inka and Spanish conquests-and then between the 13th century and today-a period marked by farming marginalization in the late 19th century likely due to a severe multidecadal drought. While these processes of local gene pool replacement do not imply losses of genetic diversity at the metapopulation scale, they support the view that gene pool replacement linked to social and environmental changes can result from opposite agricultural trajectories.


Subject(s)
Chenopodium quinoa/genetics , Genotyping Techniques/methods , Alleles , Argentina , Biodiversity , DNA, Ancient/analysis , Gene Pool , Genetic Variation/genetics , Genotype , Genotyping Techniques/history , History, 18th Century , Seeds
2.
PLoS One ; 8(5): e62707, 2013.
Article in English | MEDLINE | ID: mdl-23723970

ABSTRACT

Sweet potato (Ipomoea batatas (L.) Lam., Convolvulaceae) counts among the most widely cultivated staple crops worldwide, yet the origins of its domestication remain unclear. This hexaploid species could have had either an autopolyploid origin, from the diploid I. trifida, or an allopolyploid origin, involving genomes of I. trifida and I. triloba. We generated molecular genetic data for a broad sample of cultivated sweet potatoes and its diploid and polyploid wild relatives, for noncoding chloroplast and nuclear ITS sequences, and nuclear SSRs. Our data did not support an allopolyploid origin for I. batatas, nor any contribution of I. triloba in the genome of domesticated sweet potato. I. trifida and I. batatas are closely related although they do not share haplotypes. Our data support an autopolyploid origin of sweet potato from the ancestor it shares with I. trifida, which might be similar to currently observed tetraploid wild Ipomoea accessions. Two I. batatas chloroplast lineages were identified. They show more divergence with each other than either does with I. trifida. We thus propose that cultivated I. batatas have multiple origins, and evolved from at least two distinct autopolyploidization events in polymorphic wild populations of a single progenitor species. Secondary contact between sweet potatoes domesticated in Central America and in South America, from differentiated wild I. batatas populations, would have led to the introgression of chloroplast haplotypes of each lineage into nuclear backgrounds of the other, and to a reduced divergence between nuclear gene pools as compared with chloroplast haplotypes.


Subject(s)
Genes, Plant , Ipomoea batatas/genetics , Base Sequence , Chloroplasts/genetics , Colombia , Crops, Agricultural/genetics , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Ecuador , Evolution, Molecular , Genetic Speciation , Genetic Variation , Genome, Plant , Guatemala , Haplotypes , Mexico , Microsatellite Repeats , Multilocus Sequence Typing , Phylogeny , Phylogeography , Plant Leaves/genetics , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL