ABSTRACT
Introduction: Cortical reaction is a secretory process that occurs after a spermatozoon fuses with the oocyte, avoiding the fusion of additional sperm. During this exocytic event, the cortical granule membrane fuses with the oocyte plasma membrane. We have identified several molecular components involved in this process and confirmed that SNARE proteins regulate membrane fusion during cortical reaction in mouse oocytes. In those studies, we microinjected different nonpermeable reagents to demonstrate the participation of a specific protein in the cortical reaction. However, the microinjection technique has several limitations. In this work, we aimed to assess the potential of cell-penetrating peptides (CPP) as biotechnological tools for delivering molecules into oocytes, and to evaluate the functionality of the permeable tetanus toxin (bound to CPP sequence) during cortical reaction. Methods: Arginine-rich cell-penetrating peptides have demonstrated the optimal internalization of small molecules in mammalian cells. Two arginine-rich CPP were used in the present study. One, labeled with 5-carboxyfluorescein, to characterize the factors that can modulate its internalization, and the other, the permeable light chain of tetanus toxin, that cleaves the SNAREs VAMP1 and VAMP3 expressed in mouse oocytes. Results: Results showed that fluorescent CPP was internalized into the oocyte cytoplasm and that internalization was dependent on the concentration, time, temperature, and maturation stage of the oocyte. Using our functional assay to study cortical reaction, the light chain of tetanus toxin bound to arginine-rich cell-penetrating peptide inhibited cortical granules exocytosis. Discussion: Results obtained from the use of permeable peptides demonstrate that this CPP is a promising biotechnological tool to study functional macromolecules in mouse oocytes.
ABSTRACT
The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.
ABSTRACT
Membrane fusion in sperm cells is crucial for acrosomal exocytosis and must be preserved to ensure fertilizing capacity. Evolutionarily conserved protein machinery regulates acrosomal exocytosis. Molecular chaperones play a vital role in spermatogenesis and post-testicular maturation. Cysteine string protein (CSP) is a member of the Hsp40 co-chaperones, and the participation of molecular chaperones in acrosomal exocytosis is poorly understood. In particular, the role of CSP in acrosomal exocytosis has not been reported so far. Using western blot and indirect immunofluorescence, we show that CSP is present in human sperm, is palmitoylated, and predominantly bound to membranes. Moreover, using functional assays and transmission electron microscopy, we report that blocking the function of CSP avoided the assembly of trans-complexes and inhibited exocytosis. In summary, here, we describe the presence of CSP in human sperm and show that this protein has an essential role in membrane fusion during acrosomal exocytosis mediating the trans-SNARE complex assembly between the outer acrosomal and plasma membranes. In general, understanding CSP's role is critical in identifying new biomarkers and generating new rational-based approaches to treat male infertility.
Subject(s)
Acrosome , SNARE Proteins , Humans , Male , Acrosome/metabolism , Exocytosis/physiology , Semen/metabolism , SNARE Proteins/metabolism , Spermatozoa/metabolismABSTRACT
The sperm acrosome reaction is a unique, regulated exocytosis characterized by the secretion of the acrosomal content and the release of hybrid vesicles formed by patches of the outer acrosomal and plasma membranes. In previous reports, we have shown that inward invaginations of the acrosomal membrane delineate ring-shaped membrane microdomains that contact the plasma membrane. We have postulated that the opening and expansion of fusion pores along these rings trigger acrosomal exocytosis. The invaginations of the acrosomal membrane topologically resemble the deformations of the endosomal membrane leading to the assembly of luminal vesicles in multivesicular bodies. In fact, intra-acrosomal vesicles are also formed during acrosomal exocytosis. Endosomal sorting complex required for transport (ESCRT) participates in the organization of membrane microdomains that are invaginated and released as intraluminal vesicles in endosomes. We report here that members of ESCRT I (TSG101), ESCRT III (CHMP4), and the AAA ATPase VPS4 are present in the acrosomal region of the human sperm. Perturbing the function of these factors with antibodies or recombinant proteins inhibited acrosomal exocytosis in permeabilized cells. A similar effect was observed with a dominant-negative mutant of VPS4A cross-linked to a cell-penetrating peptide in nonpermeabilized sperm stimulated with a calcium ionophore. When the function of ESCRTs was inhibited, acrosomes showed abnormal deformation of the acrosomal membrane, and SNARE proteins that participate in acrosomal exocytosis failed to be stabilized in neurotoxin-resistant complexes. However, the growing of membrane invaginations was not blocked, and numerous intra-acrosomal vesicles were observed. These observations indicate that ESCRT-mediated processes are essential for acrosomal secretion, implicating these multifunctional complexes in an exocytic event crucial for sperm-egg fusion.