Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 59(15): 4033-45, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24990772

ABSTRACT

A serious challenge in image registration is the accurate alignment of two images in which a certain structure is present in only one of the two. Such topological changes are problematic for conventional non-rigid registration algorithms. We propose to incorporate in a conventional free-form registration framework a geometrical penalty term that minimizes the volume of the missing structure in one image. We demonstrate our method on cervical MR images for brachytherapy. The intrapatient registration problem involves one image in which a therapy applicator is present and one in which it is not. By including the penalty term, a substantial improvement in the surface distance to the gold standard anatomical position and the residual volume of the applicator void are obtained. Registration of neighboring structures, i.e. the rectum and the bladder is generally improved as well, albeit to a lesser degree.


Subject(s)
Algorithms , Brachytherapy/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Uterine Cervical Neoplasms/radiotherapy , Brachytherapy/standards , Female , Humans , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards
2.
Int J Comput Assist Radiol Surg ; 8(6): 929-36, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23546993

ABSTRACT

PURPOSE: Automated segmentation is required for radiotherapy treatment planning, and multi-atlas methods are frequently used for this purpose. The combination of multiple intermediate results from multi-atlas segmentation into a single segmentation map can be achieved by label fusion. A method that includes expert knowledge in the label fusion phase of multi-atlas-based segmentation was developed. The method was tested by application to prostate segmentation, and the accuracy was compared to standard techniques. METHODS: The selective and iterative method for performance level estimation (SIMPLE) algorithm for label fusion was modified with a weight map given by an expert that indicates the importance of each region in the evaluation of segmentation results. Voxel-based weights specified by an expert when performing the label fusion step in atlas-based segmentation were introduced into the modified SIMPLE algorithm. These weights incorporate expert knowledge on accuracy requirements in different regions of a segmentation. Using this knowledge, segmentation accuracy in regions known to be important can be improved by sacrificing segmentation accuracy in less important regions. Contextual information such as the presence of vulnerable tissue is then used in the segmentation process. This method using weight maps to fine-tune the result of multi-atlas-based segmentation was tested using a set of 146 atlas images consisting of an MR image of the lower abdomen and a prostate segmentation. Each image served as a target in a set of leave-one-out experiments. These experiments were repeated for a weight map derived from the clinical practice in our hospital. RESULTS: The segmentation accuracy increased 6 % in regions that border vulnerable tissue using expert-specified voxel-based weight maps. This was achieved at the cost of a 4 % decrease in accuracy in less clinically relevant regions. CONCLUSION: The inclusion of expert knowledge in a multi-atlas-based segmentation procedure was shown to be feasible for prostate segmentation. This method allows an expert to ensure that automatic segmentation is most accurate in critical regions. This improved local accuracy can increase the practical value of automatic segmentation.


Subject(s)
Magnetic Resonance Imaging/methods , Prostate/pathology , Algorithms , Humans , Male , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...