ABSTRACT
Hormone laboratories located "on-site" where field studies are being conducted have a number of advantages. On-site laboratories allow hormone analyses to proceed in near-real-time, minimize logistics of sample permits/shipping, contribute to in-country capacity-building, and (our focus here) facilitate cross-site collaboration through shared methods and a shared laboratory. Here we provide proof-of-concept that an on-site hormone laboratory (the Taboga Field Laboratory, located in the Taboga Forest Reserve, Costa Rica) can successfully run endocrine analyses in a remote location. Using fecal samples from wild white-faced capuchins (Cebus imitator) from three Costa Rican forests, we validate the extraction and analysis of four steroid hormones (glucocorticoids, testosterone, estradiol, progesterone) across six assays (DetectX® and ISWE, all from Arbor Assays). Additionally, as the first collaboration across three long-term, wild capuchin field sites (Lomas Barbudal, Santa Rosa, Taboga) involving local Costa Rican collaborators, this laboratory can serve as a future hub for collaborative exchange.
Subject(s)
Cebus capucinus , Animals , Laboratories , Cebus , Feces , Testosterone , Costa RicaABSTRACT
Across the globe, primates are threatened by human activities. This is especially true for species found in tropical dry forests, which remain largely unprotected. Our ability to predict primate abundance in the face of human activity depends on different species' sensitivities as well as on the characteristics of the forest itself. We studied plant and primate distribution and abundance in the Taboga Forest, a 516-ha tropical dry forest surrounded by agricultural fields in northwestern Costa Rica. We found that the density of white-faced capuchins (Cebus capucinus) at Taboga is 2-6 times higher than reported for other long-term white-faced capuchin sites. Using plant transects, we also found relatively high species richness, diversity, and equitability compared with other tropical dry forests. Edge transects (i.e., within 100 m from the forest boundary) differed from interior transects in two ways: (a) tree species associated with dry forest succession were well-established in the edge and (b) canopy cover in the edge was maintained year-round, while the interior forest was deciduous. Sighting rates for capuchins were higher near water sources but did not vary between the edge and interior forest. For comparison, we also found the same to be true for the only other primate in the Taboga Forest, mantled howler monkeys (Alouatta palliata). Year-round access to water might explain why some primate species can flourish even alongside anthropogenic disturbance. Forest fragments like Taboga may support high densities of some species because they provide a mosaic of habitats and key resources that buffer adverse ecological conditions.
Subject(s)
Cebus capucinus/physiology , Ecosystem , Animals , Biodiversity , Costa Rica , Female , Forests , Male , Plants , Population DensityABSTRACT
Interspecific hybridization allows the introgression or movement of alleles from one genome to another. While some genomic regions freely exchange alleles during hybridization, loci associated with reproductive isolation do not intermix. In many model organisms, the X chromosome displays limited introgression compared to autosomes owing to the presence of multiple loci associated with hybrid sterility or inviability (the "large X-effect"). Similarly, if hybrids are produced, the heterogametic sex is usually inviable or sterile, a pattern known as Haldane's rule. We analyzed the patterns of introgression of genetic markers located in the mitochondrial (control region) and nuclear (autosomal microsatellites and sex chromosome genes) genomes of two howler monkey species (Alouatta palliata and A. pigra) that form a natural hybrid zone in southern Mexico, to evaluate whether the large X-effect and Haldane's rule affect the outcomes of hybridization between these sister species. To identify the level of admixture of each individual in the hybrid zone (N = 254) we analyzed individuals sampled outside the hybrid zone (109 A. pigra and 39 A. palliata) to determine allele frequencies of parental species and estimated a hybrid index based on nuclear markers. We then performed a cline analysis using individuals in the hybrid zone to determine patterns of introgression for each locus. Our analyses show that although the hybrid zone is bimodal (with no known F1 s and few recent generation hybrids) and quite narrow, there has been extensive introgression in both directions, and there is a large array of admixed individuals in the hybrid zone. Mitochondrial and most autosomal markers showed bidirectional introgression, but some had biased introgression toward one species or the other. All markers on the sex chromosomes and a few autosomal markers showed highly restricted introgression. This pattern is consistent with the hypothesis that the sex chromosomes make a disproportionate contribution to reproductive isolation, and our results broaden the taxonomic representation of these patterns across animal taxa.
ABSTRACT
Groups of animals (including humans) may show flexible grouping patterns, in which temporary aggregations or subgroups come together and split, changing composition over short temporal scales, (i.e. fission and fusion). A high degree of fission-fusion dynamics may constrain the regulation of social relationships, introducing uncertainty in interactions between group members. Here we use Shannon's entropy to quantify the predictability of subgroup composition for three species known to differ in the way their subgroups come together and split over time: spider monkeys (Ateles geoffroyi), chimpanzees (Pan troglodytes) and geladas (Theropithecus gelada). We formulate a random expectation of entropy that considers subgroup size variation and sample size, against which the observed entropy in subgroup composition can be compared. Using the theory of set partitioning, we also develop a method to estimate the number of subgroups that the group is likely to be divided into, based on the composition and size of single focal subgroups. Our results indicate that Shannon's entropy and the estimated number of subgroups present at a given time provide quantitative metrics of uncertainty in the social environment (within which social relationships must be regulated) for groups with different degrees of fission-fusion dynamics. These metrics also represent an indirect quantification of the cognitive challenges posed by socially dynamic environments. Overall, our novel methodological approach provides new insight for understanding the evolution of social complexity and the mechanisms to cope with the uncertainty that results from fission-fusion dynamics.
Subject(s)
Atelinae/physiology , Pan troglodytes/physiology , Social Behavior , Theropithecus/physiology , Animals , Behavior, Animal , UncertaintyABSTRACT
OBJECTIVES: When closely related species overlap geographically, selection may favor species-specific mate recognition traits to avoid hybridization costs. Conversely, the need to recognize potential same-sex rivals may select for lower specificity, creating the possibility that selection in one domain constrains evolution in the other. Despite a wealth of data on mate recognition, studies addressing rival recognition between hybridizing species are limited to a few bird species. Using naïve populations, we examine the extent to which failed rival recognition might have affected hybridization patterns when two species of howler monkeys (Alouatta pigra and A. palliata) first met after diverging in allopatry. METHODS: We simulated first contact between naïve subjects using playback experiments in allopatric populations of the two purebred species. Using linear mixed models, we compared their look, move, and vocal responses to conspecific and heterospecific loud calls. RESULTS: Although not different in overall response strength to playbacks, the two species differed in reaction to heterospecific callers. Male A. pigra ignored calls from male A. palliata, but the reverse was not true. DISCUSSION: Despite striking differences in vocalizations, A. palliata respond equally to calls from both species whereas A. pigra respond only to conspecifics. This apparent failure of A. pigra males to recognize interspecific rivals might have biased hybridization (F1 hybrids = male A. palliata x female A. pigra), a pattern previously hypothesized based on genetic analysis of hybrids. Given that A. pigra males could be losing reproductive opportunities to heterospecific males, our findings add to growing evidence of potential costs for overly specific species recognition.
Subject(s)
Alouatta/physiology , Vocalization, Animal/physiology , Animals , Anthropology, Physical , Female , Male , Mexico , Sound Spectrography , Species SpecificityABSTRACT
Comparing vocalizations across species is useful for understanding acoustic variation at mechanistic and evolutionary levels. Here, we take advantage of the divergent vocalizations of two closely related howler monkey species (Alouatta pigra and A. palliata) to better understand vocal evolution. In addition to comparing multiple acoustic and temporal features of roars and the calling bouts in which they are produced, we tested several predictions. First, A. pigra should have roars with lower fundamental frequency and lower formant dispersion because they are larger than A. palliata and have a larger hyoid apparatus. Second, A. pigra should have faster calling rates, longer roars, longer bouts, and exaggerated call features linked to vocal effort (e.g., nonlinear phenomena and emphasized frequencies) because they are the more aggressive species during intergroup encounters. We found significant interspecific differences supporting our predictions in every tested parameter of roars and bouts, except for roar duration and barking rate. Stepwise discriminant function analyses identified the best features for differentiating roars (acoustic features: formant dispersion followed by highest frequency; temporal features: longest syllable duration followed by number of syllables). Although resembling each other more than they resemble South American howler monkeys, our comparison revealed striking differences in the vocalizations of the two Mesoamerican species. While we cannot completely rule out the influence of body size or the environmental conditions in which the two species evolved, vocal differences were likely influenced by sexual selection. The exaggerated roars and intense calling patterns in A. pigra seem more suitable for intergroup competition, whereas A. palliata calls may be better suited for mate attraction and competition within groups. With interspecific acoustic differences quantified, we will now be able to examine how vocalizations contribute to the evolutionary dynamics of the A. palliata × A. pigra hybrid zone in southern Mexico. Am. J. Primatol. 78:755-766, 2016. © 2016 Wiley Periodicals, Inc.
Subject(s)
Alouatta , Social Behavior , Vocalization, Animal , Acoustics , Animals , Body Size , MexicoABSTRACT
Social differences between primate species may result from both flexible responses to current conditions or fixed differences across taxa, yet we know little about the relative importance of these factors. Here, we take advantage of a naturally occurring hybrid zone in Tabasco, Mexico to characterize the variation in social structure among two endangered howler monkey species, Alouatta pigra and A. palliata, and their hybrids. Work in pure populations has suggested that A. pigra females maintain closer proximity, exhibit higher rates of affiliation, and lower rates of agonism than A. palliata females, but we do not know what accounts for this difference. Using identical data collection and analysis methods across three populations, we first seek to confirm previously reported interspecific differences in social structure across all sexes. We next examine: (1) how female social relationships changed with ancestry (by comparing pure and hybrid individuals); (2) how female social relationships changed with group size (A. pigra have smaller groups than A. palliata); and (3) whether female social relationships differed between two taxonomic groups within a single forest fragment (thus controlling for ecological variation). We confirmed previously described species differences, including closer proximity among females than among males in all populations. We also found that smaller groups maintained closer proximity. However, even after accounting for variation in group size, A. pigra females had closer proximity and more affiliation than A. palliata females. Furthermore, differences between pigra-like and palliata-like hybrids paralleled differences between pure populations and persisted even after controlling for ecological variation. Together, our results suggest that flexibility cannot account for all of the social differences between A. pigra and A. palliata and indicate an important genetic component in primate social behavior.