Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 748: 141216, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32798861

ABSTRACT

Historically, pelagic Sargassum were only found in the Sargasso Sea. Since 2011, blooms were regularly observed in warmer water, further south. Their developments in Central Atlantic are associated with mass strandings on the coasts, causing important damages and potentially dispersion of new bacteria. Microbiomes associated with pelagic Sargassum were analysed at large scale in Central Atlantic and near Caribbean Islands with a focus on pathogenic bacteria. Vibrio appeared widely distributed among pelagic Sargassum microbiome of our samples with higher occurrence than previously found in Mexico Gulf. Six out the 16 Vibrio-OTUs (Operational Taxonomic Unit), representing 81.2 ± 13.1% of the sequences, felt in cluster containing pathogens. Among the four different microbial profiles of pelagic Sargassum microbiome, Vibrio attained about 2% in two profiles whereas it peaked, in the two others, at 6.5 and 26.8% respectively, largely above the concentrations found in seawater surrounding raft (0.5%). In addition to sampling and measurements, we performed backward Lagrangian modelling of trajectories of rafts, and rebuilt the sampled rafts environmental history allowing us to estimate Sargassum growth rates along raft displacements. We found that Vibrio was favoured by high Sargassum growth rate and in situ ammonium and nitrite, modelled phosphate and nitrate concentrations, whereas zooplankters, benthic copepods, and calm wind (proxy of raft buoyancy near the sea surface) were less favourable for them. Relations between Vibrio and other main bacterial groups identified a competition with Alteromonas. According to forward Lagrangian tracking, part of rafts containing Vibrio could strand on the Caribbean coasts, however the strong decreases of modelled Sargassum growth rates along this displacement suggest unfavourable environment for Vibrio. For the conditions and areas observed, the sanitary risk seemed in consequence minor, but in other areas or conditions where high Sargassum growth rate occurred near coasts, it could be more important.


Subject(s)
Microbiota , Sargassum , Vibrio , Animals , Caribbean Region , Mexico , Seawater , West Indies
2.
Mar Pollut Bull ; 158: 111431, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32736205

ABSTRACT

Since 2011, huge amounts of Sargassum algae are detected in the equatorial Atlantic, causing large strandings events on the coasts of the West Indies, Brazil and West Africa. The distribution of this stock shows strong annual and interannual variability, whose drivers are not settled yet. Here we use satellite Sargassum observations from MODIS and currents from an ocean reanalysis to simulate the passive transport of algae in 2017. Wind effect was necessary to fit the observed distribution. Simulations reasonably reproduce the satellite monthly distribution for up to seven months, confirming the prominent role of transport in the distribution cycle. Annual cycle appears as a zonal exchange between eastern (EAR) and western accumulation regions (WAR). EAR is well explained by advection alone, with sharp meridional distribution controlled by converging currents below the inter-tropical Convergence Zone. Instead, WAR is not explained by advection alone, suggesting local growth.


Subject(s)
Sargassum , Atlantic Ocean , Brazil , West Indies , Wind
3.
PLoS One ; 14(9): e0222584, 2019.
Article in English | MEDLINE | ID: mdl-31527915

ABSTRACT

The present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggregations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m2 area) nested within larger ones (of hundreds of km2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargassum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery.


Subject(s)
Sargassum/growth & development , Atlantic Ocean , Biomass , Brazil , Satellite Imagery/methods , Seasons , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL