ABSTRACT
The global shrimp market holds substantial prominence within the food industry, registering a significant USD 24.7 billion in worldwide exportation in 2020. However, the production of a safe and high-quality product requires consideration of various factors, including the potential for allergenic reactions, occurrences of foodborne outbreaks, and risks of spoilage. Additionally, the exploration of the recovery of bioactive compounds (e.g., astaxanthin [AX], polyunsaturated fatty acids, and polysaccharides) from shrimp waste demands focused attention. Within this framework, this review seeks to comprehend and assess the utilization of high-intensity ultrasound (HIUS), both as a standalone method and combined with other technologies, within the shrimp industry. The objective is to evaluate its applications, limitations, and prospects, with a specific emphasis on delineating the impact of sonication parameters (e.g., power, time, and temperature) on various applications. This includes an examination of undesirable effects and identifying areas of interest for current and prospective research. HIUS has demonstrated promise in enhancing the extraction of bioactive compounds, such as AX, lipids, and chitin, while concurrently addressing concerns such as allergen reduction (e.g., tropomyosin), inactivation of pathogens (e.g., Vibrio parahaemolyticus), and quality improvement, manifesting in reduced melanosis scores and improved peelability. Nonetheless, potential impediments, particularly related to oxidation processes, especially those associated with lipids, pose a hindrance to its widespread implementation, potentially impacting texture properties. Consequently, further optimization studies remain imperative. Moreover, novel applications of sonication in shrimp processing, including brining, thawing, and drying, represent a promising avenue for expanding the utilization of HIUS in the shrimp industry.
Subject(s)
Food Handling , Penaeidae , Shellfish , Animals , Penaeidae/chemistry , Penaeidae/microbiology , Food Handling/methods , Shellfish/analysis , Shellfish/microbiology , Sonication/methods , Xanthophylls/analysis , Food Safety/methods , Polysaccharides/analysis , Ultrasonic WavesABSTRACT
Fish is a high nutritional value matrix of which production and consumption have been increasing in the last years. Advancements in the efficient evaluation of freshness are essential to optimize the quality assessment, to improve consumer safety, and to reduce raw material losses. Therefore, it is necessary to use rapid, nondestructive, and objective methodologies to evaluate the quality of this matrix. Quality Index Method (QIM) is a tool applied to indicate fish freshness through a sensory evaluation performed by a group of assessors. However, the use of QIM as an official method for quality assessment is limited by the protocol, sampling size, specificities of the species, storage conditions, and assessor's experience, which make this method subjective. Also, QIM may present divergences regarding the development of microorganisms and chemical analysis. In this way, novel quality evaluation methods such as electronic noses, electronic tongues, machine vision system, and colorimetric sensors have been proposed, and novel technologies such as proteomics and mitochondrial analysis have been developed. In this review, the weaknesses of QIM were exposed, and novel methodologies for quality evaluation were presented. The consolidation of these novel methodologies and their use as methods of quality assessment are an alternative to sensory methods, and their understanding enables a more effective fish quality control.
Subject(s)
Fishes , Food Quality , Seafood/analysis , Animals , Food Storage , Humans , Penaeidae , Seafood/microbiology , Seafood/standardsABSTRACT
This study aimed to use chemometrics to evaluate the influence of lipid and protein oxidation on the color and texture characteristics of Brazilian dry-cured loin (Socol, BDL). Upon exploration using hierarchical cluster analysis (HCA), two clusters were formed, indicating that higher water activity (aw) was associated with higher lipid and protein oxidation. However, this fact was associated with softening and low color quality (a*, chroma, and cured color). In a more in-depth exploration, using principal component analysis (PCA) for each cluster separately, connections between protein and lipid oxidation were found in high aw, as demonstrated by their statistical association. In the same way, relationships between high hardness and carbonyl contents were obtained only in high aw. In addition, an overall relationship (p < 0.05) between nondestructive measurements, such as hardness, and destructive methods (malonaldehyde and carbonyl contents) demonstrate that nondestructive techniques can be promising for further studies in the method replacement field. In this study, reasonable explanations of the connections between oxidative damage and quality traits in Socol are provided.
ABSTRACT
Ultrasound (US) has a high capacity to increase food safety. Although high and/or moderate temperature in combination with US has been studied, the knowledge about cooling/low temperatures as well as its combined effect with chemical preservation methods is scarce. Therefore, the aim of this study was to describe the inactivation of Staphylococcus spp. (SA) present in the natural microbiota of sliced Brazilian dry-cured loin (Socol, BDL) using US (40â¯kHz and 5.40â¯W/g) at 1.6-17.9â¯kJ/g, temperature (T) between 6.4 and 73.6⯰C and peracetic acid (PA) between 5.5 and 274.5â¯mg/L employing the Central Composite Rotatable Design. The model fully describes how the combination of US, T, and PA affects SA inactivation. In BDL, an increase in US acoustic energy density (kJ/g) allows the reduction of T necessary to inactivate SA because of the occurrence of synergistic effect. However, US applied at low T was inefficient. On the other hand, PA was more efficient at low T, since high T degraded this compound at different rates according to the holding T. Therefore, the data indicates a relation between the technologies used in the combined decontamination of sliced BDL improving dry-cured meat safety.