Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 95: 104740, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536063

ABSTRACT

BACKGROUND: To resist the autoimmune attack characteristic of type 1 diabetes, insulin producing pancreatic ß cells need to evade T-cell recognition. Such escape mechanisms may be conferred by low HLA class I (HLA-I) expression and upregulation of immune inhibitory molecules such as Programmed cell Death Ligand 1 (PD-L1). METHODS: The expression of PD-L1, HLA-I and CXCL10 was evaluated in the human ß cell line, ECN90, and in primary human and mouse pancreatic islets. Most genes were determined by real-time RT-PCR, flow cytometry and Western blot. Activator and inhibitor of the AKT signaling were used to modulate PD-L1 induction. Key results were validated by monitoring activity of CD8+ Jurkat T cells presenting ß cell specific T-cell receptor and transduced with reporter genes in contact culture with the human ß cell line, ECN90. FINDINGS: In this study, we identify tryptophan (TRP) as an agonist of PD-L1 induction through the AKT signaling pathway. TRP also synergistically enhanced PD-L1 expression on ß cells exposed to interferon-γ. Conversely, interferon-γ-mediated induction of HLA-I and CXCL10 genes was down-regulated upon TRP treatment. Finally, TRP and its derivatives inhibited the activation of islet-reactive CD8+ T cells by ß cells. INTERPRETATION: Collectively, our findings indicate that TRP could induce immune tolerance to ß cells by promoting their immune evasion through HLA-I downregulation and PD-L1 upregulation. FUNDING: Dutch Diabetes Research Foundation, DON Foundation, the Laboratoire d'Excellence consortium Revive (ANR-10-LABX-0073), Agence Nationale de la Recherche (ANR-19-CE15-0014-01), Fondation pour la Recherche Médicale (EQ U201903007793-EQU20193007831), Innovative Medicines InitiativeINNODIA and INNODIA HARVEST, Aides aux Jeunes Diabetiques (AJD) and Juvenile Diabetes Research Foundation Ltd (JDRF).


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Mice , Humans , Tryptophan , Interferon-gamma/metabolism , Insulin-Secreting Cells/metabolism , Immune Evasion , B7-H1 Antigen , Proto-Oncogene Proteins c-akt
2.
J Biol Chem ; 298(7): 102096, 2022 07.
Article in English | MEDLINE | ID: mdl-35660019

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low-density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-ßH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-ßH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element-binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low-density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell-lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.


Subject(s)
Insulin-Secreting Cells , Membrane Proteins , Proprotein Convertase 9 , CD36 Antigens/metabolism , Cell Line , Gain of Function Mutation , Humans , Insulin-Secreting Cells/metabolism , Lipoproteins, VLDL/metabolism , Loss of Function Mutation , Membrane Proteins/metabolism , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism
3.
Mol Cell Proteomics ; 21(5): 100229, 2022 05.
Article in English | MEDLINE | ID: mdl-35378291

ABSTRACT

Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human ß cell secretome, and recent studies question translatability of rodent ß cell secretory profiles. Here, we verify representativeness of EndoC-ßH1, one of the most widely used human ß cell lines, as a translational human ß cell model based on omics and characterize the EndoC-ßH1 secretome. We profiled EndoC-ßH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-ßH1 cells were compared to human ß cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-ßH1 cells and primary adult human ß cells was ∼90% for global omics profiles as well as for ß cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-ßH1 cells compared to adult ß cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-ßH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known ß cell hormones INS, IAPP, and IGF2. Further, EndoC-ßH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-ßH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.


Subject(s)
Insulin-Secreting Cells , Insulinoma , Pancreatic Neoplasms , Cell Line , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulinoma/metabolism , Pancreatic Neoplasms/metabolism , Proteome/metabolism , Secretome , Transcriptome
4.
Cells ; 12(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36611907

ABSTRACT

Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Diabetes Mellitus, Type 1/genetics , B7-H1 Antigen/metabolism , Mice, Inbred C57BL , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Interferon-gamma/metabolism , Cytokines/metabolism
5.
J Biol Chem ; 297(1): 100839, 2021 07.
Article in English | MEDLINE | ID: mdl-34051232

ABSTRACT

Glucose-mediated signaling regulates the expression of a limited number of genes in human pancreatic ß-cells at the transcriptional level. However, it is unclear whether glucose plays a role in posttranscriptional RNA processing or translational control of gene expression. Here, we asked whether glucose affects posttranscriptional steps and regulates protein synthesis in human ß-cell lines. We first showed the involvement of the mTOR pathway in glucose-related signaling. We also used the surface sensing of translation technique, based on puromycin incorporation into newly translated proteins, to demonstrate that glucose treatment increased protein translation. Among the list of glucose-induced proteins, we identified the proconvertase PCSK1, an enzyme involved in the proteolytic conversion of proinsulin to insulin, whose translation was induced within minutes following glucose treatment. We finally performed global proteomic analysis by mass spectrometry to characterize newly translated proteins upon glucose treatment. We found enrichment in proteins involved in translation, glycolysis, TCA metabolism, and insulin secretion. Taken together, our study demonstrates that, although glucose minorly affects gene transcription in human ß-cells, it plays a major role at the translational level.


Subject(s)
Energy Metabolism/genetics , Glucose/pharmacology , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Protein Biosynthesis/genetics , Cell Line , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit/metabolism , Energy Metabolism/drug effects , Humans , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Mitogen-Activated Protein Kinases/metabolism , Proprotein Convertase 1/metabolism , Protein Biosynthesis/drug effects , Puromycin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
6.
Diabetes ; 70(2): 516-528, 2021 02.
Article in English | MEDLINE | ID: mdl-33203696

ABSTRACT

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated glucose-regulated protein 78, and reduced spontaneous neutrophil extracellular trap formation of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of interferon-γ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Ornithine/analogs & derivatives , Pancreas/drug effects , Protein-Arginine Deiminases/antagonists & inhibitors , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 1/prevention & control , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Mice , Mice, Inbred NOD , Ornithine/pharmacology , Pancreas/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism
7.
Annu Rev Immunol ; 37: 497-519, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026413

ABSTRACT

During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.


Subject(s)
B-Lymphocytes/immunology , Lymphocytes/physiology , Lymphoid Progenitor Cells/physiology , Natural Killer T-Cells/immunology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Lineage , Cellular Microenvironment , Cytokines/metabolism , Humans , Immunity, Innate , Lymphocyte Activation , Paracrine Communication , Transcriptome
8.
Diabetes ; 68(4): 761-773, 2019 04.
Article in English | MEDLINE | ID: mdl-30655386

ABSTRACT

Bromodomain and extraterminal (BET) proteins are epigenetic readers that interact with acetylated lysines of histone tails. Recent studies have demonstrated their role in cancer progression because they recruit key components of the transcriptional machinery to modulate gene expression. However, their role during embryonic development of the pancreas has never been studied. Using mouse embryonic pancreatic explants and human induced pluripotent stem cells (hiPSCs), we show that BET protein inhibition with I-BET151 or JQ1 enhances the number of neurogenin3 (NEUROG3) endocrine progenitors. In mouse explants, BET protein inhibition further led to increased expression of ß-cell markers but in the meantime, strongly downregulated Ins1 expression. Similarly, although acinar markers, such as Cpa1 and CelA, were upregulated, Amy expression was repressed. In hiPSCs, BET inhibitors strongly repressed C-peptide and glucagon during endocrine differentiation. Explants and hiPSCs were then pulsed with BET inhibitors to increase NEUROG3 expression and further chased without inhibitors. Endocrine development was enhanced in explants with higher expression of insulin and maturation markers, such as UCN3 and MAFA. In hiPSCs, the outcome was different because C-peptide expression remained lower than in controls, but ghrelin expression was increased. Altogether, by using two independent models of pancreatic development, we show that BET proteins regulate multiple aspects of pancreatic development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/drug effects , Insulin-Secreting Cells/drug effects , Islets of Langerhans/drug effects , Nerve Tissue Proteins/metabolism , Proteins/antagonists & inhibitors , Animals , Azepines/pharmacology , Cell Differentiation/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Induced Pluripotent Stem Cells , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Triazoles/pharmacology
9.
Development ; 145(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-30042179

ABSTRACT

To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived in vitro from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes in vitro.


Subject(s)
Fetus/embryology , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Developmental/physiology , Pancreas/embryology , Transcription, Genetic/physiology , Fetus/cytology , Humans , Pancreas/cytology , Pluripotent Stem Cells/metabolism
10.
Diabetes ; 67(1): 78-84, 2018 01.
Article in English | MEDLINE | ID: mdl-29079704

ABSTRACT

The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and ß-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on ß-cell mass have an embryonic origin. Thus, we used Ucp2 knockout mice. We found an increased size of the pancreas in Ucp2-/- fetuses at embryonic day 16.5, associated with a higher number of α- and ß-cells. This phenotype was caused by an increase of PDX1+ progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the Ucp2-/- pancreata. Finally, administration of the antioxidant N-acetyl-l-cysteine to Ucp2-/- pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.


Subject(s)
Pancreas/enzymology , Pancreas/metabolism , Uncoupling Protein 2/metabolism , Animals , Blotting, Western , Cells, Cultured , Glucagon-Secreting Cells/metabolism , Immunohistochemistry , Insulin-Secreting Cells/metabolism , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Polymerase Chain Reaction , Reactive Oxygen Species/metabolism , Uncoupling Protein 2/genetics
11.
Immunity ; 47(4): 680-696.e8, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045900

ABSTRACT

The classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127- and CD127+ early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127- and CD127+ ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127- ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127+ ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis.


Subject(s)
B-Lymphocytes/metabolism , Killer Cells, Natural/metabolism , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis/genetics , T-Lymphocytes/metabolism , Adolescent , Adult , Animals , B-Lymphocytes/cytology , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Female , Gene Expression Profiling/methods , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Interleukin-7 Receptor alpha Subunit/genetics , Interleukin-7 Receptor alpha Subunit/metabolism , Killer Cells, Natural/cytology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/transplantation , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Middle Aged , Stem Cell Transplantation , T-Lymphocytes/cytology , Transplantation, Heterologous , Young Adult
12.
Nat Immunol ; 18(10): 1139-1149, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28825702

ABSTRACT

The molecular events that initiate lymphoid-lineage specification remain unidentified because the stages of differentiation during which lineage commitment occurs are difficult to characterize. We isolated fetal liver progenitor cells undergoing restriction of their differentiation potential toward the T cell-innate lymphoid cell lineage or the B cell lineage. Transcripts that defined the molecular signatures of these two subsets were sequentially upregulated in lympho-myeloid precursor cells and in common lymphoid progenitor cells, respectively, and this preceded lineage restriction; this indicates that T cell-versus-B cell commitment is not a binary fate 'decision'. The T cell-bias and B cell-bias transcriptional programs were frequently co-expressed in common lymphoid progenitor cells and were segregated in subsets biased toward T cell differentiation or B cell differentiation, after interleukin 7 (IL-7) signaling that controlled the number of progenitor cells engaging in T cell differentiation versus B cell differentiation.


Subject(s)
B-Lymphocytes/cytology , Cell Lineage , Liver/cytology , Lymphopoiesis , T-Lymphocytes/cytology , Animals , B-Lymphocytes/metabolism , Biomarkers , Cell Differentiation/genetics , Cell Lineage/genetics , Cluster Analysis , Fetus , Gene Expression Profiling , Gene Expression Regulation, Developmental , Immunophenotyping , Interleukin-7/metabolism , Liver/embryology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis/genetics , Mice , Mice, Transgenic , Signal Transduction , T-Lymphocytes/metabolism , Transcriptome
13.
Elife ; 62017 07 21.
Article in English | MEDLINE | ID: mdl-28731406

ABSTRACT

Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.


Subject(s)
Biomarkers/metabolism , Cell Differentiation , Cell Lineage , Fetus/cytology , Gene Expression Regulation, Developmental , Pancreas/cytology , Acinar Cells/cytology , Acinar Cells/metabolism , Cells, Cultured , Endocrine Cells/cytology , Endocrine Cells/metabolism , Female , Fetus/metabolism , Humans , Pancreas/metabolism , Pancreatic Ducts/cytology , Pancreatic Ducts/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Transcriptome
14.
J Clin Invest ; 126(4): 1525-37, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26999605

ABSTRACT

Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.


Subject(s)
Autoimmune Diseases/metabolism , Estrogens/metabolism , Gene Expression Regulation , Sex Characteristics , Transcription Factors/biosynthesis , Adolescent , Adult , Animals , Autoimmune Diseases/genetics , Cells, Cultured , Child , Child, Preschool , CpG Islands , DNA Methylation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/genetics , Female , Humans , Infant , Male , Mice , Mice, Inbred C3H , Middle Aged , Thymus Gland/metabolism , Transcription Factors/genetics , AIRE Protein
15.
Cell Rep ; 14(6): 1500-1516, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26832410

ABSTRACT

T and innate lymphoid cells (ILCs) share some aspects of their developmental programs. However, although Notch signaling is strictly required for T cell development, it is dispensable for fetal ILC development. Constitutive activation of Notch signaling, at the common lymphoid progenitor stage, drives T cell development and abrogates ILC development by preventing Id2 expression. By combining single-cell transcriptomics and clonal culture strategies, we characterize two heterogeneous α4ß7-expressing lymphoid progenitor compartments. αLP1 (Flt3(+)) still retains T cell potential and comprises the global ILC progenitor, while αLP2 (Flt3(-)) consists of ILC precursors that are primed toward the different ILC lineages. Only a subset of αLP2 precursors is sensitive to Notch signaling required for their proliferation. Our study identifies, in a refined manner, the diversity of transitional stages of ILC development, their transcriptional signatures, and their differential dependence on Notch signaling.


Subject(s)
B-Lymphocyte Subsets/immunology , Gene Expression Regulation, Developmental , Immunity, Innate , Signal Transduction , T-Lymphocyte Subsets/immunology , Animals , B-Lymphocyte Subsets/cytology , Cell Differentiation , Cell Lineage/immunology , Cell Proliferation , Fetus , Gene Expression Profiling , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/immunology , Integrins/genetics , Integrins/immunology , Mice , Mice, Transgenic , Receptors, Notch/genetics , Receptors, Notch/immunology , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/immunology , T-Lymphocyte Subsets/cytology , Transcription, Genetic , Transcriptome , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/immunology
16.
J Vis Exp ; (100): e52795, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26131754

ABSTRACT

Characterizing thymic settling progenitors is important to understand the pre-thymic stages of T cell development, essential to devise strategies for T cell replacement in lymphopenic patients. We studied thymic settling progenitors from murine embryonic day 13 and 18 thymi by two complementary in vitro and in vivo techniques, both based on the "hanging drop" method. This method allowed colonizing irradiated fetal thymic lobes with E13 and/or E18 thymic progenitors distinguished by CD45 allotypic markers and thus following their progeny. Colonization with mixed populations allows analyzing cell autonomous differences in biologic properties of the progenitors while colonization with either population removes possible competitive selective pressures. The colonized thymic lobes can also be grafted in immunodeficient male recipient mice allowing the analysis of the mature T cell progeny in vivo, such as population dynamics of the peripheral immune system and colonization of different tissues and organs. Fetal thymic organ cultures revealed that E13 progenitors developed rapidly into all mature CD3(+) cells and gave rise to the canonical γδ T cell subset, known as dendritic epithelial T cells. In comparison, E18 progenitors have a delayed differentiation and were unable to generate dendritic epithelial T cells. The monitoring of peripheral blood of thymus-grafted CD3(-/-) mice further showed that E18 thymic settling progenitors generate, with time, larger numbers of mature T cells than their E13 counterparts, a feature that could not be appreciated in the short term fetal thymic organ cultures.


Subject(s)
Embryonic Stem Cells/cytology , Organ Culture Techniques/methods , Thymus Gland/cytology , Animals , Embryonic Stem Cells/metabolism , Female , Flow Cytometry , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Antigen, T-Cell/biosynthesis , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thymus Gland/embryology , Thymus Gland/metabolism
17.
Nat Immunol ; 15(1): 27-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24317038

ABSTRACT

The generation of T cells depends on the migration of hematopoietic progenitor cells to the thymus throughout life. The identity of the thymus-settling progenitor cells has been a matter of considerable debate. Here we found that thymopoiesis was initiated by a first wave of T cell lineage-restricted progenitor cells with limited capacity for population expansion but accelerated differentiation into mature T cells. They gave rise to αß and γδ T cells that constituted Vγ3(+) dendritic epithelial T cells. Thymopoiesis was subsequently maintained by less-differentiated progenitor cells that retained the potential to develop into B cells and myeloid cells. In that second wave, which started before birth, progenitor cells had high proliferative capacity but delayed differentiation capacity and no longer gave rise to embryonic γδ T cells. Our work reconciles conflicting hypotheses on the nature of thymus-settling progenitor cells.


Subject(s)
Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Animals , Animals, Newborn , Cell Line , Cell Lineage/genetics , Cells, Cultured , Flow Cytometry , Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/cytology , Interleukin-7 Receptor alpha Subunit/genetics , Interleukin-7 Receptor alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/cytology , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/embryology , Time Factors , Transcriptome , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
18.
J Immunol ; 191(4): 1716-23, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23851687

ABSTRACT

A large fraction of innate NKTγδ T cells uses TCRs composed of a semi-invariant Vδ6.3/6.4-Dδ2-Jδ1 chain together with more diverse Vγ1-Jγ4 chains. To address the role of γδTCR specificity in their generation, we analyzed their development in mice transgenic (Tg) for a Vγ1-Jγ4 chain frequently expressed by NKTγδ cells (Tg-γ) and in mice Tg for the same Vγ1-Jγ4 chain together with a Vδ6BDδ2Jδ1 chain not usually found among NKTγδ cells (Tg-γδ). Surprisingly, both promyelocytic leukemia zinc finger (PLZF)(+) and NK1.1(+) NKTγδ cells were found in the thymus of Tg-γδ albeit at lower numbers than in Tg-γ mice, and virtually all of them expressed the Tg TCR. However, the PLZF(+) subset, but not the NK1.1(+) subset, also expressed an endogenous Vδ6.3/6.4 chain, and its size was severely reduced in TCRδ(-/-) Tg-γδ mice. These results could suggest that the PLZF(+) and the NK1.1(+) subsets are developmentally unrelated. However, PLZF(+) and NK1.1(+) NKTγδ cells express identical Vδ6.3/6.4 chains, and NK1.1(+) cells can be obtained upon intrathymic injection of sorted PLZF(+) cells, thus indicating their developmental relationship. In fact, the NK1.1(+) γδ thymocytes present in Tg-γδ mice correspond to a small subset of NK1.1(+) γδ thymocytes in wild-type animals, which express a more diverse repertoire of TCRs and can be recognized by the expression of the CD62L Ag. Collectively, our data demonstrated that TCR specificity is essential for the development of most NKTγδ T cells and revealed a developmental heterogeneity in γδ T cells expressing the NK1.1 marker.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Lymphopoiesis/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Thymocytes/immunology , Animals , Antigens, Ly/analysis , Cell Lineage , Gene Rearrangement, delta-Chain T-Cell Antigen Receptor , Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor , Immunity, Innate , Immunophenotyping , Kruppel-Like Transcription Factors/analysis , L-Selectin/analysis , Mice , Mice, Inbred CBA , Mice, Transgenic , NK Cell Lectin-Like Receptor Subfamily B/analysis , Natural Killer T-Cells/cytology , Natural Killer T-Cells/transplantation , Promyelocytic Leukemia Zinc Finger Protein , Receptors, Antigen, T-Cell, gamma-delta/deficiency , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocyte Subsets/cytology , Thymocytes/cytology , Thymus Gland/cytology , Thymus Gland/immunology
19.
J Immunol ; 189(8): 3822-30, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22972921

ABSTRACT

Lineage commitment is regulated during hematopoiesis, with stepwise loss of differentiation potential ultimately resulting in lineage commitment. In this study we describe a novel population of B/NK bipotent precursors among common lymphoid progenitors in the fetal liver and the bone marrow. The absence of T cell precursor potential, both in vivo and in vitro, is due to low Notch1 expression and secondary to inhibition of E2A activity by members of the inhibitor of DNA binding (Id) protein family. Our results demonstrate a new, Id protein-dependent, molecular mechanism of Notch1 repression, operative in both fetal and adult common lymphoid progenitors, where T cell potential is selectively inhibited without affecting either the B or NK programs. This study identifies Id proteins as negative regulators of T cell specification, before B and NK commitment, and provides important insights into the transcriptional networks orchestrating hematopoiesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Cell Differentiation/immunology , DNA-Binding Proteins/antagonists & inhibitors , Down-Regulation/immunology , Receptor, Notch1/antagonists & inhibitors , Stem Cells/immunology , T-Lymphocyte Subsets/immunology , fms-Like Tyrosine Kinase 3/deficiency , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Down-Regulation/genetics , Inhibitor of Differentiation Protein 2/deficiency , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Proteins/deficiency , Inhibitor of Differentiation Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multigene Family/genetics , Multigene Family/immunology , Receptor, Notch1/biosynthesis , Receptor, Notch1/genetics , Stem Cells/cytology , Stem Cells/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , fms-Like Tyrosine Kinase 3/biosynthesis , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...