Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Psychol ; 12(1): 370, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943210

ABSTRACT

BACKGROUND: This study explores the intricate web of symptoms experienced by academically gifted high school students, focusing on procrastination, rumination, perfectionism, and cognitive flexibility. The well-being of these gifted adolescents remains a pivotal concern, and understanding the dynamics of these symptoms is vital. METHODS: A diverse sample of 207 academically gifted high school students from Mashhad, Iran, participated in this study. Using convenience sampling, participants from grades 10, 11, and 12 were included, with detailed assessments conducted through questionnaires measuring the mentioned symptoms. RESULTS: Our network analysis uncovers compelling insights into the interplay of these symptoms: Procrastination, though moderately central, exerts significant influence within the network, underscoring its relevance. Cognitive flexibility, while centrally positioned, curiously exhibits a negative influence, potentially serving as a protective factor. Negative perfectionism emerges as the keystone symptom, with both high centrality and a positive influence. Rumination displays substantial centrality and a positive influence, indicating its role in symptom exacerbation. Positive perfectionism, moderately central, lacks direct influence on other symptoms. CONCLUSION: This network analysis provides a nuanced understanding of the relationships among procrastination, rumination, perfectionism, and cognitive flexibility in academically gifted adolescents. Negative perfectionism and cognitive flexibility emerge as critical factors deserving attention in interventions aimed at enhancing the well-being of this unique group. Further research should explore causal relationships to refine targeted interventions.


Subject(s)
Child, Gifted , Perfectionism , Procrastination , Students , Humans , Adolescent , Male , Female , Students/psychology , Child, Gifted/psychology , Rumination, Cognitive , Iran , Surveys and Questionnaires , Adolescent Behavior/psychology
2.
Sci Rep ; 14(1): 4309, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383690

ABSTRACT

Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Memory, Short-Term , Neural Networks, Computer , Basal Ganglia , Gait
3.
Microprocess Microsyst ; 98: 104778, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36785847

ABSTRACT

Feature selection is one of the most important challenges in machine learning and data science. This process is usually performed in the data preprocessing phase, where the data is transformed to a proper format for further operations by machine learning algorithm. Many real-world datasets are highly dimensional with many irrelevant, even redundant features. These kinds of features do not improve classification accuracy and can even shrink down performance of a classifier. The goal of feature selection is to find optimal (or sub-optimal) subset of features that contain relevant information about the dataset from which machine learning algorithms can derive useful conclusions. In this manuscript, a novel version of firefly algorithm (FA) is proposed and adapted for feature selection challenge. Proposed method significantly improves performance of the basic FA, and also outperforms other state-of-the-art metaheuristics for both, benchmark bound-constrained and practical feature selection tasks. Method was first validated on standard unconstrained benchmarks and later it was applied for feature selection by using 21 standard University of California, Irvine (UCL) datasets. Moreover, presented approach was also tested for relatively novel COVID-19 dataset for predicting patients health, and one microcontroller microarray dataset. Results obtained in all practical simulations attest robustness and efficiency of proposed algorithm in terms of convergence, solutions' quality and classification accuracy. More precisely, the proposed approach obtained the best classification accuracy on 13 out of 21 total datasets, significantly outperforming other competitor methods.

4.
Sci Rep ; 12(1): 6302, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35440609

ABSTRACT

Deep learning has recently been utilized with great success in a large number of diverse application domains, such as visual and face recognition, natural language processing, speech recognition, and handwriting identification. Convolutional neural networks, that belong to the deep learning models, are a subtype of artificial neural networks, which are inspired by the complex structure of the human brain and are often used for image classification tasks. One of the biggest challenges in all deep neural networks is the overfitting issue, which happens when the model performs well on the training data, but fails to make accurate predictions for the new data that is fed into the model. Several regularization methods have been introduced to prevent the overfitting problem. In the research presented in this manuscript, the overfitting challenge was tackled by selecting a proper value for the regularization parameter dropout by utilizing a swarm intelligence approach. Notwithstanding that the swarm algorithms have already been successfully applied to this domain, according to the available literature survey, their potential is still not fully investigated. Finding the optimal value of dropout is a challenging and time-consuming task if it is performed manually. Therefore, this research proposes an automated framework based on the hybridized sine cosine algorithm for tackling this major deep learning issue. The first experiment was conducted over four benchmark datasets: MNIST, CIFAR10, Semeion, and UPS, while the second experiment was performed on the brain tumor magnetic resonance imaging classification task. The obtained experimental results are compared to those generated by several similar approaches. The overall experimental results indicate that the proposed method outperforms other state-of-the-art methods included in the comparative analysis in terms of classification error and accuracy.


Subject(s)
Brain Neoplasms , Neural Networks, Computer , Algorithms , Handwriting , Humans , Magnetic Resonance Imaging
5.
J Comput Biol ; 29(6): 515-529, 2022 06.
Article in English | MEDLINE | ID: mdl-35446145

ABSTRACT

A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.


Subject(s)
COVID-19 , Algorithms , Brain , Humans , Machine Learning
6.
Neural Comput Appl ; 34(11): 9043-9068, 2022.
Article in English | MEDLINE | ID: mdl-35125670

ABSTRACT

Edge computing is a novel technology, which is closely related to the concept of Internet of Things. This technology brings computing resources closer to the location where they are consumed by end-users-to the edge of the cloud. In this way, response time is shortened and lower network bandwidth is utilized. Workflow scheduling must be addressed to accomplish these goals. In this paper, we propose an enhanced firefly algorithm adapted for tackling workflow scheduling challenges in a cloud-edge environment. Our proposed approach overcomes observed deficiencies of original firefly metaheuristics by incorporating genetic operators and quasi-reflection-based learning procedure. First, we have validated the proposed improved algorithm on 10 modern standard benchmark instances and compared its performance with original and other improved state-of-the-art metaheuristics. Secondly, we have performed simulations for a workflow scheduling problem with two objectives-cost and makespan. We performed comparative analysis with other state-of-the-art approaches that were tested under the same experimental conditions. Algorithm proposed in this paper exhibits significant enhancements over the original firefly algorithm and other outstanding metaheuristics in terms of convergence speed and results' quality. Based on the output of conducted simulations, the proposed improved firefly algorithm obtains prominent results and managed to establish improvement in solving workflow scheduling in cloud-edge by reducing makespan and cost compared to other approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...