Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 01 15.
Article in English | MEDLINE | ID: mdl-31939738

ABSTRACT

For pathogens infecting single host species evolutionary trade-offs have previously been demonstrated between pathogen-induced mortality rates and transmission rates. It remains unclear, however, how such trade-offs impact sub-lethal pathogen-inflicted damage, and whether these trade-offs even occur in broad host-range pathogens. Here, we examine changes over the past 110 years in symptoms induced in maize by the broad host-range pathogen, maize streak virus (MSV). Specifically, we use the quantified symptom intensities of cloned MSV isolates in differentially resistant maize genotypes to phylogenetically infer ancestral symptom intensities and check for phylogenetic signal associated with these symptom intensities. We show that whereas symptoms reflecting harm to the host have remained constant or decreased, there has been an increase in how extensively MSV colonizes the cells upon which transmission vectors feed. This demonstrates an evolutionary trade-off between amounts of pathogen-inflicted harm and how effectively viruses position themselves within plants to enable onward transmission.


Subject(s)
Host-Pathogen Interactions/genetics , Maize streak virus , Plant Diseases/virology , Zea mays , Evolution, Molecular , Host-Pathogen Interactions/physiology , Maize streak virus/pathogenicity , Maize streak virus/physiology , Plant Diseases/classification , Plant Diseases/genetics , Plant Necrosis and Chlorosis/classification , Plant Necrosis and Chlorosis/genetics , Plant Necrosis and Chlorosis/virology , Zea mays/genetics , Zea mays/physiology , Zea mays/virology
2.
PLoS One ; 9(8): e105932, 2014.
Article in English | MEDLINE | ID: mdl-25166274

ABSTRACT

Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing "dominant negative mutant" versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or "leaky" expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV's replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.


Subject(s)
Disease Resistance , Maize streak virus/genetics , Plants, Genetically Modified/virology , Zea mays/genetics , Zea mays/immunology , Cell Culture Techniques , Genome, Viral , Maize streak virus/immunology , Plants, Genetically Modified/immunology , Promoter Regions, Genetic , Transgenes , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication , Zea mays/virology
3.
Virology ; 442(2): 173-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23679984

ABSTRACT

The plant-infecting mastreviruses (family Geminiviridae) express two distinct replication-initiator proteins, Rep and RepA. Although RepA is essential for systemic infectivity, little is known about its precise function. We therefore investigated its role in replication using 2D-gel electrophoresis to discriminate the replicative forms of Maize streak virus (MSV) mutants that either fail to express RepA (RepA(-)), or express RepA that is unable to bind the plant retinoblastoma related protein, pRBR. Whereas amounts of viral DNA were reduced in two pRBR-binding deficient RepA mutants, their repertoires of replicative forms changed only slightly. While a complete lack of RepA expression was also associated with reduced viral DNA titres, the only traces of replicative intermediates of RepA(-) viruses were those indicative of recombination-dependent replication. We conclude that in MSV, RepA, but not RepA-pRBR binding, is necessary for single-stranded DNA production and efficient rolling circle replication.


Subject(s)
DNA Helicases/metabolism , Maize streak virus/physiology , Trans-Activators/metabolism , Viral Proteins/metabolism , Virus Replication , Cells, Cultured , DNA Helicases/genetics , Electrophoresis, Gel, Two-Dimensional , Maize streak virus/genetics , Sequence Deletion , Trans-Activators/genetics , Viral Load , Viral Proteins/genetics , Zea mays/virology
4.
Arch Virol ; 156(12): 2297-301, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21960043

ABSTRACT

Dahlia mosaic disease of the ornamental flowering plant Dahlia is caused by two caulimoviruses, dahlia mosaic virus (DMV) and dahlia common mosaic virus (DCMV). We used a rolling-circle amplification method to amplify, clone and determine for the first time the full genome sequence of a DCMV isolate from New Zealand (DCMV-NZ). Within the 7949-bp circular double-stranded retro-transcribing DCMV-NZ DNA, we identified six putative open reading frames, typical of all genomes in the family Caulimoviridae. The availability of the complete DCMV sequence provides a reference genome against which all others can be compared.


Subject(s)
Caulimovirus/genetics , Dahlia/virology , Caulimovirus/isolation & purification , Caulimovirus/pathogenicity , Chromosome Mapping , Genome, Viral , Molecular Sequence Data , New Zealand , Open Reading Frames , Phylogeny , Plant Diseases/virology , Viral Proteins/genetics
5.
J Gen Virol ; 92(Pt 10): 2458-2465, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21653753

ABSTRACT

Maize streak disease, caused by the A strain of the African endemic geminivirus, maize streak mastrevirus (MSV-A), threatens the food security and livelihoods of subsistence farmers throughout sub-Saharan Africa. Using a well-established transient expression assay, this study investigated the potential of a spliceable-intron hairpin RNA (hpRNA) approach to interfere with MSV replication. Two strategies were explored: (i) an inverted repeat of a 662 bp region of the MSV replication-associated protein gene (rep), which is essential for virus replication and is therefore a good target for post-transcriptional gene silencing; and (ii) an inverted repeat of the viral long intergenic region (LIR), considered for its potential to trigger transcriptional silencing of the viral promoter region. After co-bombardment of cultured maize cells with each construct and an infectious partial dimer of the cognate virus genome (MSV-Kom), followed by viral replicative-form-specific PCR, it was clear that, whilst the hairpin rep construct (pHPrepΔI(662)) completely inhibited MSV replication, the LIR hairpin construct was ineffective in this regard. In addition, pHPrepΔI(662) inhibited or reduced replication of six MSV-A genotypes representing the entire breadth of known MSV-A diversity. Further investigation by real-time PCR revealed that the pHPrepΔI(662) inverted repeat was 22-fold more effective at reducing virus replication than a construct containing the sense copy, whilst the antisense copy had no effect on replication when compared with the wild type. This is the first indication that an hpRNA strategy targeting MSV rep has the potential to protect transgenic maize against diverse MSV-A genotypes found throughout sub-Saharan Africa.


Subject(s)
Gene Silencing , Maize streak virus/physiology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Virus Replication , Geminiviridae , Maize streak virus/genetics , Plant Diseases/virology , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Transients and Migrants
6.
Plant Biotechnol J ; 5(6): 759-67, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17924935

ABSTRACT

In this article, we report transgene-derived resistance in maize to the severe pathogen maize streak virus (MSV). The mutated MSV replication-associated protein gene that was used to transform maize showed stable expression to the fourth generation. Transgenic T2 and T3 plants displayed a significant delay in symptom development, a decrease in symptom severity and higher survival rates than non-transgenic plants after MSV challenge, as did a transgenic hybrid made by crossing T2 Hi-II with the widely grown, commercial, highly MSV-susceptible, white maize genotype WM3. To the best of our knowledge, this is the first maize to be developed with transgenic MSV resistance and the first all-African-produced genetically modified crop plant.


Subject(s)
Maize streak virus/immunology , Plants, Genetically Modified/virology , Viral Nonstructural Proteins/genetics , Zea mays/virology , Plant Diseases/immunology , Plants, Genetically Modified/immunology , Transgenes , Zea mays/genetics , Zea mays/immunology
7.
J Gen Virol ; 88(Pt 1): 325-336, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17170465

ABSTRACT

Maize streak disease is a severe agricultural problem in Africa and the development of maize genotypes resistant to the causal agent, Maize streak virus (MSV), is a priority. A transgenic approach to engineering MSV-resistant maize was developed and tested in this study. A pathogen-derived resistance strategy was adopted by using targeted deletions and nucleotide-substitution mutants of the multifunctional MSV replication-associated protein gene (rep). Various rep gene constructs were tested for their efficacy in limiting replication of wild-type MSV by co-bombardment of maize suspension cells together with an infectious genomic clone of MSV and assaying replicative forms of DNA by quantitative PCR. Digitaria sanguinalis, an MSV-sensitive grass species used as a model monocot, was then transformed with constructs that had inhibited virus replication in the transient-expression system. Challenge experiments using leafhopper-transmitted MSV indicated significant MSV resistance--from highly resistant to immune--in regenerated transgenic D. sanguinalis lines. Whereas regenerated lines containing a mutated full-length rep gene displayed developmental and growth defects, those containing a truncated rep gene both were fertile and displayed no growth defects, making the truncated gene a suitable candidate for the development of transgenic MSV-resistant maize.


Subject(s)
Maize streak virus/physiology , Viral Proteins/physiology , Virus Replication/physiology , Gene Expression , Maize streak virus/chemistry , Maize streak virus/genetics , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...