Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
J Environ Sci (China) ; 147: 74-82, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003085

ABSTRACT

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.


Subject(s)
Benzhydryl Compounds , Enzymes, Immobilized , Laccase , Phenols , Polyethylene Glycols , Water Pollutants, Chemical , Laccase/chemistry , Laccase/metabolism , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Polyethylene Glycols/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Biodegradation, Environmental , Endocrine Disruptors/chemistry
2.
ACS Nano ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361472

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening disease with no early detection, few treatments, and dismal outcomes. Although collagen overdeposition is a hallmark of lung fibrosis, current research mostly focuses on the cellular aspect, leaving collagen, particularly its dynamic remodeling (i.e., degradation and turnover), largely unexplored. Here, using a collagen hybridizing peptide (CHP) that specifically binds unfolded collagen chains, we reveal vast collagen denaturation in human IPF lungs and delineate the spatiotemporal progression of collagen denaturation three-dimensionally within fibrotic lungs in mice. Transcriptomic analyses support that lung collagen denaturation is strongly associated with up-regulated collagen catabolism in mice and patients. We thus show that CHP probing differentiates remodeling responses to antifibrotics and highlights the resolution of established fibrosis by agents up-regulating collagen catabolism. We further develop a radioactive CHP that detects fibrosis in vivo in mice as early as 7 days postlung-injury (Ashcroft score: 2-3) by positron emission tomography (PET) imaging and ex vivo in clinical lung specimens. These findings establish collagen denaturation as a promising marker of fibrotic remodeling for the investigation, diagnosis, and therapeutic development of pulmonary fibrosis.

3.
Alzheimers Dement ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320044

ABSTRACT

INTRODUCTION: Electro-acupuncture (EA) has demonstrated potential in improving mild-to-moderate dementia in clinics, but the underlying scientific target remains unclear. METHODS: EA was administered to APP/PS1 Alzheimer's disease (AD) mice, with untreated AD, and wild type (WT) mice serving as controls. The efficacy of EA was assessed by the Morris water maze cognitive functional tests. Brain magnetic resonance imaging-positron emission tomography (PET) scans using [18F]TZ4877 targeting sphingosine-1-phosphate receptor 1 (S1PR1) and [18F]AV45 targeting amyloid beta fibrils were conducted. The correlation between regional brain PET quantifications and cognitive functions was analyzed. RESULTS: EA significantly improved cognitive and memory functions of AD (p  = 0.04) and reduced the uptake of [18F]TZ4877 in the cortex (p  = 0.02) and hippocampus (p  = 0.03). Immunofluorescence confirmed colocalizations of S1PR1 with glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1. Furthermore, immunohistochemistry showed a significant reduction of interleukin 1ß and tumor necrosis factor α after EA treatment. DISCUSSION: EA may reverse AD by suppressing neuroinflammation, and the PET imaging of S1PR1 seemed potent in evaluating the treatment for AD patients HIGHLIGHTS: Electro-acupuncture (EA) was administered to APP/PS1 Alzheimer's disease (AD) mice, with untreated AD, and wild type (WT) mice serving as controls. The efficacy of EA was assessed by the Morris water maze cognitive functional tests and positron emission tomography (PET) imaging quantifications. PET tracer [18F]AV45 was used to detect amyloid beta deposition. An increased uptake of [18F]AV45 was found in AD compared to WT mice, with significance observed only in the cortex and not in the hippocampus. EA treatment exhibited a trend toward reduced [18F]AV45 uptake in AD mouse brains post-treatment. However, statistical difference was not attained in most brain regions. EA "Baihui (DU20) and Sishencong (EX-HN1)" significantly improved cognitive and memory functions of AD (p = 0.04). Brain magnetic resonance imaging p(MRI)-positron emission tomography (PET) quantifications revealed that significantly reduced the uptake of [18F]TZ4877 in the cortex (p = 0.02) and hippocampus (p = 0.03) after EA treatment. The correlation between PET quantifications and cognitive functions was analyzed and the most notable correlations were found between escape latency (reaction cognitive and memory behavior) and volume distribution (VT) quantifications of [18F]TZ4877. VT quantifications of [18F]TZ4877 in key brain regions for cognitive and memory ability, such as the cortex and hippocampus, positively correlated with platform latency (cortex p < 0.01, r = 0.7102; hippocampus p < 0.01, r = 0.6891). Immunofluorescence confirmed colocalizations of S1PR1 with glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1 in the AD brain. And the EA treatment significantly reduced the signals in the cortex and hippocampus. Immunohistochemistry showed a significant reduction of interleukin 1ß and tumor necrosis factor α after EA treatment. EA reversed AD by suppressing neuroinflammation in the cortex and hippocampus. The S1PR1 targeting PET tracer [18F]TZ4877 showed promise in evaluating the pathological progression of AD in clinical settings.

4.
Adv Mater ; : e2403066, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348089

ABSTRACT

Controlling exchange bias (EB) by electric fields is crucial for next-generation magnetic random access memories and spintronics with ultralow energy consumption and ultrahigh speed. Multiferroic heterostructures have been traditionally used to electrically control EB and interfacial ferromagnetism through weak/indirect coupling between ferromagnetic and ferroelectric films. However, three major bottlenecks (lattice mismatch, interface defects, and weak/indirect coupling in multiferroic heterostructures) remain, resulting in only a few tens of milli-tesla EB field. Here, this study reports a robust electric-field control recipe to dynamically tailor the EB effect in a pure CrI3 homotrilayer on a ferroelectric Y-doped HfO2 (HYO) substrate, and demonstrate a colossal and tunable EB field (HE) from -0.15 to +0.33 T, giving rise to an EB modulation of 0.48 T. The charge doping due to ferroelectric HYO film divides a homo-configuration of CrI3 homotrilayer into one antiferromagnetic (AFM) bilayer CrI3 and one ferromagnetic (FM) monolayer CrI3, favoring direct exchange coupling. The synergies of charge doping and electric field induce a transition of magnetic orders from AFM to FM phase in bilayer CrI3, which is also supported by first-principles calculations, leading to the robust electric control of colossal EB effect. The results therefore open numerous opportunities for exploring 2D spintronics, memories, and braininspired in-memory computing.

5.
J Am Soc Mass Spectrom ; 35(9): 2209-2221, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39164201

ABSTRACT

Detection of illicit compounds like explosives and drugs of abuse at trace levels is crucial to provide public security and health safety. A dual ambient sampling system hollow cathode discharge (HCD) ion source was developed to investigate its performance. Here, trinitrotoluene (TNT), trinitrobenzene (TNB), hexamethylene triperoxide diamine (HMTD), and triacetone triperoxide (TATP) as explosives and methamphetamine (MA) as drugs of abuse were taken as model compounds. Two sample inlets, inlet-1 and inlet-2, are available for ambient sampling. In negative ion mode, N2 and air HCD plasmas are confined close to inlet-1, but in positive ion mode, they are confined close to inlet-2. Special design of the ion source makes it feasible to generate multiple ions from a single analyte, which assists in understanding the gas phase ionization mechanism. In negative ion mode, both TNT and TNB gave radical ions, [M]-•, as major ions for N2 HCD plasma as they were introduced via inlet-1 or inlet-2. TNB gave radical ions for air and N2 HCD plasmas, while TNT exhibited adduct ions, [TNT-H]-, by using air HCD plasma. In positive ion mode, HMTD gave [HMTD + H]+ m/z 209 ions, while TATP only produced adduct ions with ammonia, [TATP + NH4]+ m/z 240. Regardless of ion source inlet, MA showed protonated molecule ions, [MA + H]+ m/z 150. As analytes were introduced via inlet-1, the stability of the HCD background ion signal reduced, leading to a decrease in sensitivity. Unlike that in negative ion mode, introduction of ambient air in positive ion mode enhanced the sensitivity of the air HCD ion source through the formation of hydronium ions, which gave protonated molecule ions. Ionization mechanisms are also discussed.

6.
NPJ Digit Med ; 7(1): 206, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112566

ABSTRACT

The increasing prevalence of myopia worldwide presents a significant public health challenge. A key strategy to combat myopia is with early detection and prediction in children as such examination allows for effective intervention using readily accessible imaging technique. To this end, we introduced DeepMyopia, an artificial intelligence (AI)-enabled decision support system to detect and predict myopia onset and facilitate targeted interventions for children at risk using routine retinal fundus images. Based on deep learning architecture, DeepMyopia had been trained and internally validated on a large cohort of retinal fundus images (n = 1,638,315) and then externally tested on datasets from seven sites in China (n = 22,060). Our results demonstrated robustness of DeepMyopia, with AUCs of 0.908, 0.813, and 0.810 for 1-, 2-, and 3-year myopia onset prediction with the internal test set, and AUCs of 0.796, 0.808, and 0.767 with the external test set. DeepMyopia also effectively stratified children into low- and high-risk groups (p < 0.001) in both test sets. In an emulated randomized controlled trial (eRCT) on the Shanghai outdoor cohort (n = 3303) where DeepMyopia showed effectiveness in myopia prevention compared to NonCyc-based model, with an adjusted relative reduction (ARR) of -17.8%, 95% CI: -29.4%, -6.4%. DeepMyopia-assisted interventions attained quality-adjusted life years (QALYs) of 0.75 (95% CI: 0.53, 1.04) per person and avoided blindness years of 13.54 (95% CI: 9.57, 18.83) per 1 million persons compared to natural lifestyle with no active intervention. Our findings demonstrated DeepMyopia as a reliable and efficient AI-based decision support system for intervention guidance for children.

7.
Exploration (Beijing) ; 4(4): 20230082, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175892

ABSTRACT

Designing a high-performance cathode is essential for the development of proton-conducting solid oxide fuel cells (H-SOFCs), and nanocomposite cathodes have proven to be an effective means of achieving this. However, the mechanism behind the nanocomposite cathodes' remarkable performance remains unknown. Doping the Co element into BaZrO3 can result in the development of BaCoO3 and BaZr0.7Co0.3O3 nanocomposites when the doping concentration exceeds 30%, according to the present study. The construction of the BaCoO3/BaZr0.7Co0.3O3 interface is essential for the enhancement of the cathode catalytic activity, as demonstrated by thin-film studies using pulsed laser deposition to simulate the interface of the BCO and BZCO individual particles and first-principles calculations to predict the oxygen reduction reaction steps. Eventually, the H-SOFC with a BaZr0.4Co0.6O3 cathode produces a record-breaking power density of 2253 mW cm-2 at 700°C.

8.
Comput Methods Programs Biomed ; 256: 108382, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39213898

ABSTRACT

OBJECTIVE: In diabetes mellitus patients, hyperuricemia may lead to the development of diabetic complications, including macrovascular and microvascular dysfunction. However, the level of blood uric acid in diabetic patients is obtained by sampling peripheral blood from the patient, which is an invasive procedure and not conducive to routine monitoring. Therefore, we developed deep learning algorithm to detect noninvasively hyperuricemia from retina photographs and metadata of patients with diabetes and evaluated performance in multiethnic populations and different subgroups. MATERIALS AND METHODS: To achieve the task of non-invasive detection of hyperuricemia in diabetic patients, given that blood uric acid metabolism is directly related to estimated glomerular filtration rate(eGFR), we first performed a regression task for eGFR value before the classification task for hyperuricemia and reintroduced the eGFR regression values into the baseline information. We trained 3 deep learning models: (1) metadata model adjusted for sex, age, body mass index, duration of diabetes, HbA1c, systolic blood pressure, diastolic blood pressure; (2) image model based on fundus photographs; (3)hybrid model combining image and metadata model. Data from the Shanghai General Hospital Diabetes Management Center (ShDMC) were used to develop (6091 participants with diabetes) and internally validated (using 5-fold cross-validation) the models. External testing was performed on an independent dataset (UK Biobank dataset) consisting of 9327 participants with diabetes. RESULTS: For the regression task of eGFR, in ShDMC dataset, the coefficient of determination (R2) was 0.684±0.07 (95 % CI) for image model, 0.501±0.04 for metadata model, and 0.727±0.002 for hybrid model. In external UK Biobank dataset, a coefficient of determination (R2) was 0.647±0.06 for image model, 0.627±0.03 for metadata model, and 0.697±0.07 for hybrid model. Our method was demonstrably superior to previous methods. For the classification of hyperuricemia, in ShDMC validation, the area, under the curve (AUC) was 0.86±0.013for image model, 0.86±0.013 for metadata model, and 0.92±0.026 for hybrid model. Estimates with UK biobank were 0.82±0.017 for image model, 0.79±0.024 for metadata model, and 0.89±0.032 for hybrid model. CONCLUSION: There is a potential deep learning algorithm using fundus photographs as a noninvasively screening adjunct for hyperuricemia among individuals with diabetes. Meanwhile, combining patient's metadata enables higher screening accuracy. After applying the visualization tool, it found that the deep learning network for the identification of hyperuricemia mainly focuses on the fundus optic disc region.


Subject(s)
Algorithms , Deep Learning , Diabetes Mellitus , Glomerular Filtration Rate , Hyperuricemia , Metadata , Neural Networks, Computer , Humans , Middle Aged , Hyperuricemia/complications , Male , Female , Diabetes Mellitus/blood , Fundus Oculi , Aged , Adult , Uric Acid/blood , Image Processing, Computer-Assisted/methods
9.
BMC Cardiovasc Disord ; 24(1): 335, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961354

ABSTRACT

BACKGROUND: The efficacy of optimal medical therapy (OMT) with or without revascularization therapy in patients with stable coronary artery disease (SCAD) remains controversial. We performed a meta-analysis of randomized controlled trials (RCTs) that compared OMT with or without revascularization therapy for SCAD patients. METHODS: Studies were searched in PubMed, EMBASE, and the Cochrane Central Register of Clinical Trials from January 1, 2005, to December 30, 2023. The main efficacy outcome was a composite of all-cause death, myocadiac infarction, revascularization, and cerebrovascular accident. Results were pooled using random effects model and fixed effects model and are presented as odd ratios (ORs) with 95% confidence intervals (CI). RESULTS: Ten studies involving 12,790 participants were included. The arm of OMT with revascularization compared with OMT alone was associated with decreased risks for MACCE (OR 0.55 [95% CI 0.38-0.80], I²=93%, P = 0.002), CV death (OR 0.84 [95% CI 0.73-0.97], I²=36%, P = 0.02), revascularization (OR 0.32 [95% CI 0.20-0.50], I²=92%, P < 0.001), and MI (OR 0.85 [95% CI 0.76-0.96], I²=45%, P = 0.007). While there was no significant difference between OMT with revascularization and OMT alone in the odds of all-cause death (OR 0.94 [95% CI 0.84-1.05], I²=0%, P = 0.30). CONCLUSIONS: The current updated meta-analysis of 10 RCTs shows that in patients with SCAD, OMT with revascularization would reduce the risk for MACCE, cardiovascular death, and MI. However, the invasive strategy does not decrease the risks for all-cause mortality when comparing with OMT alone.


Subject(s)
Coronary Artery Disease , Randomized Controlled Trials as Topic , Humans , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , Coronary Artery Disease/diagnostic imaging , Treatment Outcome , Risk Factors , Female , Male , Aged , Middle Aged , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/adverse effects , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/mortality , Risk Assessment , Myocardial Revascularization/adverse effects , Myocardial Revascularization/mortality , Time Factors
10.
BMJ ; 386: e079143, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043397

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of a clinical decision support system (CDSS) in improving the use of guideline accordant antihypertensive treatment in primary care settings in China. DESIGN: Pragmatic, open label, cluster randomised trial. SETTING: 94 primary care practices in four urban regions of China between August 2019 and July 2022: Luoyang (central China), Jining (east China), and Shenzhen (south China, including two regions). PARTICIPANTS: 94 practices were randomised (46 to CDSS, 48 to usual care). 12 137 participants with hypertension who used up to two classes of antihypertensives and had a systolic blood pressure <180 mm Hg and diastolic blood pressure <110 mm Hg were included. INTERVENTIONS: Primary care practices were randomised to use an electronic health record based CDSS, which recommended a specific guideline accordant regimen for initiation, titration, or switching of antihypertensive (the intervention), or to use the same electronic health record without CDSS and provide treatment as usual (control). MAIN OUTCOME MEASURES: The primary outcome was the proportion of hypertension related visits during which an appropriate (guideline accordant) treatment was provided. Secondary outcomes were the average reduction in systolic blood pressure and proportion of participants with controlled blood pressure (<140/90 mm Hg) at the last scheduled follow-up. Safety outcomes were patient reported antihypertensive treatment related events, including syncope, injurious fall, symptomatic hypotension or systolic blood pressure <90 mm Hg, and bradycardia. RESULTS: 5755 participants with 23 113 visits in the intervention group and 6382 participants with 27 868 visits in the control group were included. Mean age was 61 (standard deviation 13) years and 42.5% were women. During a median 11.6 months of follow-up, the proportion of visits at which appropriate treatment was given was higher in the intervention group than in the control group (77.8% (17 975/23 113) v 62.2% (17 328/27 868); absolute difference 15.2 percentage points (95% confidence interval (CI) 10.7 to 19.8); P<0.001; odds ratio 2.17 (95% CI 1.75 to 2.69); P<0.001). Compared with participants in the control group, those in the intervention group had a 1.6 mm Hg (95% CI -2.7 to -0.5) greater reduction in systolic blood pressure (-1.5 mm Hg v 0.3 mm Hg; P=0.006) and a 4.4 percentage point (95% CI -0.7 to 9.5) improvement in blood pressure control rate (69.0% (3415/4952) v 64.6% (3778/5845); P=0.07). Patient reported antihypertensive treatment related adverse effects were rare in both groups. CONCLUSIONS: Use of a CDSS in primary care in China improved the provision of guideline accordant antihypertensive treatment and led to a modest reduction in blood pressure. The CDSS offers a promising approach to delivering better care for hypertension, both safely and efficiently. TRIAL REGISTRATION: ClinicalTrials.gov NCT03636334.


Subject(s)
Antihypertensive Agents , Decision Support Systems, Clinical , Hypertension , Primary Health Care , Aged , Female , Humans , Male , Middle Aged , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , China , Electronic Health Records , Guideline Adherence , Hypertension/drug therapy , Practice Guidelines as Topic
11.
Crit Rev Anal Chem ; : 1-54, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889072

ABSTRACT

Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.

12.
ACS Chem Neurosci ; 15(11): 2112-2120, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38776461

ABSTRACT

Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.


Subject(s)
Positron-Emission Tomography , Receptors, Purinergic P2X7 , Tauopathies , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Brain/metabolism , Brain/diagnostic imaging , Disease Models, Animal , Fluorine Radioisotopes , Mice, Transgenic , Positron-Emission Tomography/methods , Receptors, Purinergic P2X7/metabolism , tau Proteins/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism
13.
ACS Omega ; 9(15): 17423-17431, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645324

ABSTRACT

As recurrent and metastatic nasopharyngeal carcinoma (NPC) is the most common cause of death among patients with NPC, there is an urgent clinical need for the development of precision diagnosis to guide personalized treatment. Recent emerging evidence substantiates the increased expression of transferrin receptor 1 (also known as cluster of differentiation 71, CD71) within tumor tissues and the inherent targeting capability of natural heavy-chain ferritin (HFn) toward CD71. This study aimed to synthesize and assess a radiotracer ([64Cu]Cu-NOTA-HFn) designed to target CD71 for positron emission tomography (PET) imaging in an NPC tumor-bearing mouse model. The entire radiolabeling process of [64Cu]Cu-NOTA-HFn was completed within 15 min with high yield (>98.5%) and high molar activity (72.96 ± 21.33 GBq/µmol). The in vitro solubility and stability experiments indicated that [64Cu]Cu-NOTA-HFn had a high water solubility (log P = -2.42 ± 0.52, n = 6) and good stability in phosphate-buffered saline (PBS) for up to 48 h. The cell saturation binding assay indicated that [64Cu]Cu-NOTA-HFn had a nanomolar affinity (Kd = 10.9 ± 6.1 nM) for CD71-overexpressing C666-1 cells. To test the target engagement in vivo, prolonged-time PET imaging was performed at 1, 6, 12, 24, and 36 h postinjection (p.i.) of [64Cu]Cu-NOTA-HFn to C666-1 NPC tumor-bearing mice. The C666-1 tumors could be visualized by [64Cu]Cu-NOTA-HFn and blocked by nonradiolabeled HFn. PET imaging quantitative analysis demonstrated that the uptake of [64Cu]Cu-NOTA-HFn in C666-1 tumors peaked at 6 h p.i. and the best radioactive tumor-to-muscle ratio was 10.53 ± 3.11 (n = 3). Ex vivo biodistribution assay at 6 h p.i. showed that the tumor uptakes were 1.43 ± 0.23%ID/g in the nonblock group and 0.92 ± 0.2%ID/g in the block group (n = 3, p < 0.05). Immunohistochemistry and immunofluorescence staining confirmed positive expression of CD71 and the uptake of HFn in C666-1 tumor tissues. In conclusion, our experiments demonstrated that [64Cu]Cu-NOTA-HFn possesses a very high target engagement for CD71-positive NPC tumors and provided a fundamental basis for further clinical translation.

14.
Arch Esp Urol ; 77(2): 173-182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583010

ABSTRACT

BACKGROUND: In recent years, significant attention has been directed towards long non-coding RNA NUT family member 2A antisense RNA 1 (NUTM2A-AS1) for its oncogenic role in tumours. This study aimed to investigate the functional and molecular mechanisms underlying NUTM2A-AS1 in prostate cancer (PCa). METHODS: NUTM2A-AS1, miR-376a-3p, and protein arginine methyltransferase 5 (PRMT5) levels were assessed in PCa samples and matched non-cancerous prostate samples. The DU145 cell line was conditioned to undergo transfection with relevant plasmids, and a cell counting kit-8 assay was performed to evaluate cell proliferation. A Transwell assay was conducted to analyse cell migration or invasion. Cell apoptosis was assessed using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and flow cytometry. A tumour sphere formation assay was conducted to assess the ability of PCa cells to form tumour spheres. RESULTS: We found elevated expression of NUTM2A-AS1 and PRMT5 and decreased expression of miR-376a-3p in PCa samples. Inhibition of NUTM2A-AS1 or overexpression of miR-376a-3p led to reduced cell proliferation and diminished cancer stem cell-like traits in vitro. NUTM2A-AS1 regulated miR-376a-3p through competitive absorption, thereby modulating PRMT5. Up-regulation of PRMT5 nullified the therapeutic effects of inhibiting NUTM2A-AS1 or overexpressing miR-376a-3p in DU145 cells. CONCLUSIONS: NUTM2A-AS1 promotes cancer stem cell-like traits in PCa cells by targeting PRMT5 through miR-376a-3p. Therefore, these NUTM2A-AS1-based novel insights into tumour therapy hold promise for patients with PCa.


Subject(s)
MicroRNAs , Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prostate , Cell Line, Tumor , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
15.
Electrophoresis ; 45(15-16): 1408-1417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38629299

ABSTRACT

Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.


Subject(s)
Adenocarcinoma of Lung , Cisplatin , DNA Repair , Drug Resistance, Neoplasm , Lung Neoplasms , SOXC Transcription Factors , Humans , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , DNA Repair/drug effects , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , DNA Damage/drug effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor
16.
Mol Pharm ; 21(6): 2865-2877, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38666508

ABSTRACT

Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.


Subject(s)
Membrane Proteins , Myocarditis , Positron-Emission Tomography , Animals , Male , Mice , Cyclosporine , Dendritic Cells/metabolism , Disease Models, Animal , Fluorodeoxyglucose F18 , Membrane Proteins/metabolism , Mice, Inbred BALB C , Myocarditis/diagnostic imaging , Myocarditis/drug therapy , Myocardium/metabolism , Myocardium/pathology , Radiopharmaceuticals
17.
Arch. esp. urol. (Ed. impr.) ; 77(2): 173-182, mar. 2024. ilus, graf, tab
Article in English | IBECS | ID: ibc-231939

ABSTRACT

Background: In recent years, significant attention has been directed towards long non-coding RNA NUT family member 2A antisense RNA 1 (NUTM2A-AS1) for its oncogenic role in tumours. This study aimed to investigate the functional and molecular mechanisms underlying NUTM2A-AS1 in prostate cancer (PCa). Methods: NUTM2A-AS1, miR-376a-3p, and protein arginine methyltransferase 5 (PRMT5) levels were assessed in PCa samples and matched non-cancerous prostate samples. The DU145 cell line was conditioned to undergo transfection with relevant plasmids, and a cell counting kit-8 assay was performed to evaluate cell proliferation. A Transwell assay was conducted to analyse cell migration or invasion. Cell apoptosis was assessed using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and flow cytometry. A tumour sphere formation assay was conducted to assess the ability of PCa cells to form tumour spheres. Results: We found elevated expression of NUTM2A-AS1 and PRMT5 and decreased expression of miR-376a-3p in PCa samples. Inhibition of NUTM2A-AS1 or overexpression of miR-376a-3p led to reduced cell proliferation and diminished cancer stem cell-like traits in vitro. NUTM2A-AS1 regulated miR-376a-3p through competitive absorption, thereby modulating PRMT5. Up-regulation of PRMT5 nullified the therapeutic effects of inhibiting NUTM2A-AS1 or overexpressing miR-376a-3p in DU145 cells. Conclusions: NUTM2A-AS1 promotes cancer stem cell-like traits in PCa cells by targeting PRMT5 through miR-376a-3p. Therefore, these NUTM2A-AS1-based novel insights into tumour therapy hold promise for patients with PCa. (AU)


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , MicroRNAs , Protein-Arginine N-Methyltransferases
18.
RSC Adv ; 14(15): 10209-10218, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38544936

ABSTRACT

In this study, we discuss the tunability of valley splitting using first-principles calculations with a monolayer MoTe2 and layered ferromagnetic MnS2 heterostructure as an example. We observe that, due to the magnetic proximity effect (MPE) at the interface, a monolayer of MoTe2 can exhibit a significant valley splitting of 55.2 meV. The production of the interlayer dipoles with spin-adapted configuration could be the origin of MPE at the interface. Furthermore, the valley splitting can be regulated continuously by the perpendicular electric field and biaxial strain. Interestingly, the valley splitting increases with the increasing induced magnetic moments in MoTe2 by applying an electric field while the inverse laws are presented by applying biaxial strains, which indicates that the mechanisms of valley splitting manipulating in these two ways are quite different. The calculation results suggest that the electric field influences the electric dipole distributions at the interface, which determines the induced magnetic moments in monolayer MoTe2, and results in valley splitting variations. However, biaxial strains not only affect MPE at the interface but also the intrinsic spin splitting caused by spin-orbital coupling (SOC) effects of monolayer MoTe2 itself and the latter is even the dominating mechanism of valley splitting variations.

19.
Environ Sci Technol ; 58(12): 5290-5298, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38468128

ABSTRACT

Hyperuricemia is characterized by elevated blood uric acid (UA) levels, which can lead to certain diseases. Epidemiological studies have explored the association between environmental contaminant exposure and hyperuricemia. However, few studies have investigated the role of chemical exposure in the development of hyperuricemia. Here, we sought to investigate the effects of bisphenol exposure on the occurrence of hyperuricemia. Fifteen bisphenol chemicals (BPs) were detected in human serum and urine samples collected from an area with a high incidence of hyperuricemia in China. Serum UA levels positively correlated with urinary bisphenol S (BPS), urinary bisphenol P (BPP), and serum bisphenol F (BPF). The effects of these three chemicals on UA levels in mice were explored at various exposure concentrations. An increase in serum UA levels was observed in BPS- and BPP-exposed mice. The results showed that BPS exposure increased serum UA levels by damaging the structure of the kidneys, whereas BPP exposure increased serum UA levels by disturbing purine metabolism in the liver. Moreover, BPF did not induce an increase in serum UA levels owing to the inhibition of guanine conversion to UA. In summary, we provide evidence of the mechanisms whereby exposure to three BPs disturbs UA homeostasis. These findings provide new insights into the risks of exposure to bisphenol chemicals.


Subject(s)
Animal Experimentation , Hyperuricemia , Phenols , Humans , Animals , Mice , Hyperuricemia/chemically induced , Environmental Exposure , Benzhydryl Compounds/toxicity
20.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 148-154, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372101

ABSTRACT

Left-sided colorectal cancer (LSCC) and right-sided colorectal cancer (RSCC) belong to colorectal cancer happening at different positions, which exhibit different pathogenesis. MicroRNA (miRNA)s are widely known regulators in diverse carcinomas. This research aims to identify a differentially expressed miRNA that simultaneously regulates genes associated with LSCC and RSCC and reveal their regulatory relation in cell migration and invasion. Bioinformatics analyses were conducted to uncover the dysregulated functional genes in LSCC/RSCC and obtain their common targeted miRNAs. The expression pattern of miR-27a-3p, TCF7L2, and TGFBR2 in cancerous and adjacent tissues from LSCC/RSCC patients was assessed through qRT-PCR, followed by Pearson's correlation coefficients analysis. The interaction of miR-27a-3p with TCF7L2 or TGFBR2 was thereafter confirmed through luciferase reporter assay. TCF7L2 and TGFBR2 protein levels were assessed by western blotting after overexpressing level of miR-27a-3p. Cell migration and invasion were routinely examined by wound healing and transwell experiments, respectively. TCF7L2 and TGFBR2 were respectively identified and verified to be lowly expressed in LSCC and RSCC, both of them were predicted and confirmed as targets of miR-27a-3p. MiR-27a-3p elevation exacerbated migration and invasion of both LSCC and RSCC cells. The impacts of miR-27a-3p on migration and invasion could be blocked by overexpressing TCF7L2 in LSCC cells and also reversed by up-regulating TGFBR2 in RSCC cells. In general, miR-27a-3p accelerated the migration and invasion capabilities of LSCC and RSCC cells through negatively regulating TCF7L2 and TGFBR2, respectively, which might be an effective molecular target for the treatment of LSCC/RSCC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Receptor, Transforming Growth Factor-beta Type II , Transcription Factor 7-Like 2 Protein , Humans , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Transcription Factor 7-Like 2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL