Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Math Model ; 103: 714-730, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34815616

ABSTRACT

Contact Tracing (CT) is one of the measures taken by government and health officials to reduce the spread of the novel coronavirus. In this paper, we investigate its efficacy by developing a compartmental model for assessing its impact on mitigating the spread of the virus. We describe the impact on the reproduction number R 0 of COVID-19. In particular, we discuss the importance and relevance of parameters of the model such as the number of reported cases, effectiveness of tracking and monitoring policy, and the transmission rates to contact tracing. We describe the terms "perfect tracking", "perfect monitoring" and "perfect reporting" to indicate that traced contacts will be tracked while incubating, tracked contacts are efficiently monitored so that they do not cause secondary infections, and all infected persons are reported, respectively. We consider three special scenarios: (1) perfect monitoring and perfect tracking of contacts of a reported case, (2) perfect reporting of cases and perfect monitoring of tracked reported cases and (3) perfect reporting and perfect tracking of contacts of reported cases. Furthermore, we gave a lower bound on the proportion of contacts to be traced to ensure that the effective reproduction, R c , is below one and describe R c in terms of observable quantities such as the proportion of reported and traced cases. Model simulations using the COVID-19 data obtained from John Hopkins University for some selected states in the US suggest that even late intervention of CT may reasonably reduce the transmission of COVID-19 and reduce peak hospitalizations and deaths. In particular, our findings suggest that effective monitoring policy of tracked cases and tracking of traced contacts while incubating are more crucial than tracing more contacts. The use of CT coupled with other measures such as social distancing, use of face mask, self-isolation or quarantine and lockdowns will greatly reduce the spread of the epidemic as well as peak hospitalizations and total deaths.

2.
Commun Nonlinear Sci Numer Simul ; 98: 105764, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33746459

ABSTRACT

We propose a time-fractional compartmental model (SEI A I S HRD) comprising of the susceptible, exposed, infected (asymptomatic and symptomatic), hospitalized, recovered and dead population for the COVID-19 pandemic. We study the properties and dynamics of the proposed model. The conditions under which the disease-free and endemic equilibrium points are asymptotically stable are discussed. Furthermore, we study the sensitivity of the parameters and use the data from Tennessee state (as a case study) to discuss identifiability of the parameters of the model. The non-negative parameters in the model are obtained by solving inverse problems with empirical data from California, Florida, Georgia, Maryland, Tennessee, Texas, Washington and Wisconsin. The basic reproduction number is seen to be slightly above the critical value of one suggesting that stricter measures such as the use of face-masks, social distancing, contact tracing, and even longer stay-at-home orders need to be enforced in order to mitigate the spread of the virus. As stay-at-home orders are rescinded in some of these states, we see that the number of cases began to increase almost immediately and may continue to rise until the end of the year 2020 unless stricter measures are taken.

3.
Comput Methods Programs Biomed ; 200: 105842, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33257111

ABSTRACT

BACKGROUND AND OBJECTIVE: Intrauterine Growth Restriction (IUGR) is a condition in which a fetus does not grow to the expected weight during pregnancy. There are several well documented causes in the literature for this issue, such as maternal disorder, and genetic influences. Nevertheless, besides the risk during pregnancy and labour periods, in a long term perspective, the impact of IUGR condition during the child development is an area of research itself. The main objective of this work is to propose a machine learning solution to identify the most significant features of importance based on physiological, clinical or socioeconomic factors correlated with previous IUGR condition after 10 years of birth. METHODS: In this work, 41 IUGR (18 male) and 34 Non-IUGR (22 male) children were followed up 9 years after the birth, in average (9.1786 ± 0.6784 years old). A group of machine learning algorithms is proposed to classify children previously identified as born under IUGR condition based on 24-hours monitoring of ECG (Holter) and blood pressure (ABPM), and other clinical and socioeconomic attributes. In additional, an algorithm of relevance determination based on the classifier is also proposed, to determine the level of importance of the considered features. RESULTS: The proposed classification solution achieved accuracy up to 94.73%, and better performance than seven state-of-the-art machine learning algorithms. Also, relevant latent factors related to HRV and BP monitoring are proposed, such as: day-time heart rate (day-time HR), day-night systolic blood pressure (day-night SBP), 24-hour standard deviation (SD) of SBP, dropped, morning cortisol creatinine, 24-hour mean of SDs of all NN intervals for each 5 minutes segment (24-hour SDNNi), among others. CONCLUSION: With outstanding accuracy of our proposed solutions, the classification system and the indication of relevant attributes may support medical teams on the clinical monitoring of IUGR children during their childhood development.


Subject(s)
Fetal Growth Retardation , Machine Learning , Blood Pressure , Body Weight , Child , Female , Heart Rate , Humans , Male , Pregnancy
4.
Springerplus ; 4: 588, 2015.
Article in English | MEDLINE | ID: mdl-26543723

ABSTRACT

In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

SELECTION OF CITATIONS
SEARCH DETAIL